Show simple item record

dc.contributor.authorMa, W.
dc.contributor.authorLiu, D.
dc.contributor.authorShagoshtasbi, H.
dc.contributor.authorShukla, A.
dc.contributor.authorNugroho, E. S.
dc.contributor.authorZohar, Y.
dc.contributor.authorLee, Y.-K.
dc.date.accessioned2016-02-25T13:17:54Z
dc.date.available2016-02-25T13:17:54Z
dc.date.issued2013-04
dc.identifier.citationMa W, Liu D, Shagoshtasbi H, Shukla A, Nugroho ES, et al. (2013) Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device. The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Available: http://dx.doi.org/10.1109/nems.2013.6559761.
dc.identifier.doi10.1109/nems.2013.6559761
dc.identifier.urihttp://hdl.handle.net/10754/598280
dc.description.abstractMicrofiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution. © 2013 IEEE.
dc.description.sponsorshipThis research was partially supported by a grant from School of Engineering, HKUST, a grant from NSFC, China (No. 81171418) and by an award from the King Abdullah University of Science and Technology (KAUST Award No. SA-C0040/UK-C0016).
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectcell lysing
dc.subjectcell viability
dc.subjectenrichment
dc.subjecthydrodynamic shear
dc.subjectisolation
dc.subjectmicrofiltration
dc.subjectmicrofluidics
dc.titleExperimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device
dc.typeConference Paper
dc.identifier.journalThe 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems
dc.contributor.institutionHong Kong University of Science and Technology, Hong Kong, China
dc.contributor.institutionGuangzhou First Municipal People's Hospital, Guangzhou, China
dc.contributor.institutionUniversity of Arizona, Tucson, United States
kaust.grant.numberSA-C0040/UK-C0016


This item appears in the following Collection(s)

Show simple item record