Exoelectrogenic biofilm as a template for sustainable formation of a catalytic mesoporous structure
Type
ArticleDate
2014-06-04Online Publication Date
2014-06-04Print Publication Date
2014-11Permanent link to this record
http://hdl.handle.net/10754/598275
Metadata
Show full item recordAbstract
© 2014 Wiley Periodicals, Inc. Actively respiring biofilms of Geobacter sulfurreducens were used as a biotemplate to form a palladium mesoporous layer directly on an electrode surface. Cells and proteins within the biofilm acted as the reductant and stabilizer to facilitate the reduction, dispersion, and attachment of palladium nanoparticles to the electrode surface without using synthetic chemicals. © 2014 Wiley Periodicals, Inc. Mesoporous structures can increase catalytic activity by maximizing the ratio of surface area to volume, but current synthesis techniques utilize expensive polymers and toxic chemicals. A Geobacter sulfurreducens biofilm was used as a sustainable template to form mesoporous Pd structures while eliminating the need for synthetic chemicals. The bulk of the biofilm material was removed by thermal treatments after nanoparticle formation, producing a catalytic Pd mesoporous (pore size 9.7±0.1nm) structure attached to the graphite electrode with a 1.5-2μm thick backbone composed of nanoparticles (~200nm). A control electrode electrochemically plated with Pd in the absence of a biofilm exhibited a variable planar Pd base (~0.5-3μm thick) with sporadic Pd extrusions (~2μm across, 1-5μm tall) from the surface. The biotemplated mesoporous structure produced 15-20% higher stable current densities during H2 oxidation tests than the electrochemically plated control electrode, even though 30% less Pd was present in the biotemplated catalyst. These results indicate that electroactive biofilms can be used as a sustainable base material to produce nanoporous structures without the need for synthetic polymers. Biotechnol. Bioeng. 2014;111: 2349-2354.Citation
Yates MD, Cusick RD, Ivanov I, Logan BE (2014) Exoelectrogenic biofilm as a template for sustainable formation of a catalytic mesoporous structure. Biotechnology and Bioengineering 111: 2349–2354. Available: http://dx.doi.org/10.1002/bit.25267.Sponsors
Contract grant sponsor: King Abdullah University of Science and Technology (KAUST)Contract grant sponsor: National Science Foundation (NSF) Graduate Research Fellowship ProgramPublisher
WileyJournal
Biotechnology and BioengineeringPubMed ID
24771104ae974a485f413a2113503eed53cd6c53
10.1002/bit.25267
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
- Authors: Prokhorova A, Sturm-Richter K, Doetsch A, Gescher J
- Issue date: 2017 Mar 15
- Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth.
- Authors: Strycharz-Glaven SM, Tender LM
- Issue date: 2012 Jun
- Crystallographic orientation and electrode nature are key factors for electric current generation by Geobacter sulfurreducens.
- Authors: Maestro B, Ortiz JM, Schrott G, Busalmen JP, Climent V, Feliu JM
- Issue date: 2014 Aug
- NanoSIMS imaging reveals metabolic stratification within current-producing biofilms.
- Authors: Chadwick GL, Jiménez Otero F, Gralnick JA, Bond DR, Orphan VJ
- Issue date: 2019 Oct 8
- Limitations for current production in Geobacter sulfurreducens biofilms.
- Authors: Bonanni PS, Bradley DF, Schrott GD, Busalmen JP
- Issue date: 2013 Apr