• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Examining the Effects of Different Ring Configurations and Equatorial Fluorine Atom Positions on CO 2 Sorption in [Cu(bpy) 2 SiF 6 ]

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Forrest, Katherine A.
    Pham, Tony
    Nugent, Patrick
    Burd, Stephen D.
    Mullen, Ashley
    Wojtas, Lukasz
    Zaworotko, Michael J.
    Space, Brian
    KAUST Grant Number
    FIC/2010/06
    Date
    2013-09-10
    Online Publication Date
    2013-09-10
    Print Publication Date
    2013-10-02
    Permanent link to this record
    http://hdl.handle.net/10754/598267
    
    Metadata
    Show full item record
    Abstract
    Simulations of CO2 sorption were performed in a metal-organic material (MOM) that is part of a "SIFSIX" family of compounds that has remarkable carbon dioxide capture and separation properties. The MOM considered here has the formula [Cu(bpy)2SiF6] (bpy = 4,4′-bipyridine). This hydrophobic MOM is both water-stable and CO 2-specific with significant sorption capacity under ambient conditions. The crystal structure reveals bpy rings and equatorial fluorine atoms in multiple possible orientations; the static disorder has been modeled based on single-crystal X-ray diffraction data revealing several possible relatives of atoms in the crystal structure. With regards to the bpy rings, the structure can be interpreted as two pyridyl rings with coplanar configurations within a unit cell (configuration 1), a twisted bpy ring conformation in which orthogonal pyridyl rings have C4 symmetry about the Cu2+ ion (configuration 2), and a twisted bpy ring conformation in which the two orthogonal pyridyl rings are facing one another within a unit cell (configuration 3). Further, the equatorial fluorine atoms can be positioned such that all atoms are eclipsed with the square grid (position A), oriented at a 21.3 angle with respect to the square grid (position B), and oriented at a 45 angle with respect to the square grid (position C). It was observed that experimental data for CO2 sorption were only consistent with sorption into configurations 1 and 3 with any of the possible equatorial fluorine atom positions at ambient temperatures, although simulations using position A produced slightly higher uptakes in these bpy ring configurations. It is demonstrated that the orientation of the bpy rings in configurations 1 and 3 allows more space for the sorbate molecules and thus promotes favorable MOM-sorbate interactions, resulting in isotherms in line with the experimental results. The results from this study suggests that [Cu(bpy)2SiF 6] in either configuration 1 or 3 with CO2 present in the pores at ambient temperatures is consistent with experimental sorption measurements and crystal structure data. © 2013 American Chemical Society.
    Citation
    Forrest KA, Pham T, Nugent P, Burd SD, Mullen A, et al. (2013) Examining the Effects of Different Ring Configurations and Equatorial Fluorine Atom Positions on CO 2 Sorption in [Cu(bpy) 2 SiF 6 ] . Crystal Growth & Design 13: 4542–4548. Available: http://dx.doi.org/10.1021/cg401034s.
    Sponsors
    This work was supported by the National Science Foundation (Award No. CHE-1152362). Computations were performed under a XSEDE Grant (No. TG-DMR090028) to B.S. This publication is also based on work supported by Award No. FIC/2010/06, made by King Abdullah University of Science and Technology (KAUST). The authors also thank the Space Foundation (Basic and Applied Research) for partial support. The authors acknowledge the use of the services provided by Research Computing at the University of South Florida.
    Publisher
    American Chemical Society (ACS)
    Journal
    Crystal Growth & Design
    DOI
    10.1021/cg401034s
    ae974a485f413a2113503eed53cd6c53
    10.1021/cg401034s
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.