• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol–gel generated Mg–Al–CO 3 layered double hydroxide with very labile interlayer anions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Chubar, Natalia
    KAUST Grant Number
    KUK-C1-017-12
    Date
    2014
    Permanent link to this record
    http://hdl.handle.net/10754/598263
    
    Metadata
    Show full item record
    Abstract
    © the Partner Organisations 2014. Current research on Layered Double Hydroxides (LDHs, also known as hydrotalcites, HTs) is predominantly focused on their intercalations, but the industrial application of LDHs for anion exchange adsorption has not yet been achieved. It was recently recognized that, to develop LDH applications, these materials should be produced using methods other than direct co-precipitation. Mg-Al-CO3LDH produced using an alkoxide-free sol-gel synthesis showed exceptional removal properties for aqueous selenium species. Se K-edge EXAFS/XANES and FTIR studies (supporting the data by XRD patterns) were performed to explain the unusual adsorptive performance of Mg-Al LDH by revealing the molecular-level mechanism of HSeO3 -, SeO4 2-and {HSeO3 -+ SeO4 2-} uptake at pH 5, 7 and 8.5. The role of inner-sphere complexation (exhibited by inorganic adsorbents with good performance) in adsorption of both selenium aqueous species was not confirmed. However, Mg-Al LDH fully met the other expectations regarding the involvement of the interlayer anions. The interlayer carbonate (due to its favorable speciation and generous HT hydration) gave a "second breath" to selenite sorption and was the only mechanism that controlled the removal of Se(vi). Because inner sphere complexation was the leading mechanism for selenite removal, ion exchange via surface OH-and interlayer CO3 2-species was the only mechanism for selenate removal; both of these species were easily bound to Mg-Al LDH (on its surface and gently parked into the interlayer forming a multilayer without violation of the structure of Mg-Al-CO3LDH). This work provides the first theoretical explanation of why it is more difficult to sorb selenate than selenite and which material should be used for this purpose. This journal is
    Citation
    Chubar N (2014) EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol–gel generated Mg–Al–CO 3 layered double hydroxide with very labile interlayer anions . J Mater Chem A 2: 15995–16007. Available: http://dx.doi.org/10.1039/c4ta03463e.
    Sponsors
    A major part of the work was funded by King Abdullah University of Science and Technology (KAUST) through Center-in-Development award no. KUK-C1-017-12. The EXAFS research at DUBBLE at ESRF was funded by NWO (Dutch Ministry of Scientific Research). The authors gratefully thank Dr Harrison (University of Aberdeen) and Prof. Krivovichev (St. Petersburg State University) for providing the crystallography data.
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    J. Mater. Chem. A
    DOI
    10.1039/c4ta03463e
    ae974a485f413a2113503eed53cd6c53
    10.1039/c4ta03463e
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.