Type
Conference PaperDate
2013-04Permanent link to this record
http://hdl.handle.net/10754/598228
Metadata
Show full item recordAbstract
We consider the problem of defining, generating, and tracing provenance in data-oriented workflows, in which input data sets are processed by a graph of transformations to produce output results. We first give a new general definition of provenance for general transformations, introducing the notions of correctness, precision, and minimality. We then determine when properties such as correctness and minimality carry over from the individual transformations' provenance to the workflow provenance. We describe a simple logical-provenance specification language consisting of attribute mappings and filters. We provide an algorithm for provenance tracing in workflows where logical provenance for each transformation is specified using our language. We consider logical provenance in the relational setting, observing that for a class of Select-Project-Join (SPJ) transformations, logical provenance specifications encode minimal provenance. We have built a prototype system supporting the features and algorithms presented in the paper, and we report a few preliminary experimental results. © 2013 IEEE.Citation
Ikeda R, Das Sarma A, Widom J (2013) Logical provenance in data-oriented workflows? 2013 IEEE 29th International Conference on Data Engineering (ICDE). Available: http://dx.doi.org/10.1109/ICDE.2013.6544882.Sponsors
This work was supported by the National Science Foundation (IIS-0904497), the Boeing Corporation, and a KAUST research grant.ae974a485f413a2113503eed53cd6c53
10.1109/ICDE.2013.6544882