• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Local randomization in neighbor selection improves PRM roadmap quality

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    McMahon, Troy
    Jacobs, Sam
    Boyd, Bryan
    Tapia, Lydia
    Amato, Nancy M.
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2012-10
    Permanent link to this record
    http://hdl.handle.net/10754/598224
    
    Metadata
    Show full item record
    Abstract
    Probabilistic Roadmap Methods (PRMs) are one of the most used classes of motion planning methods. These sampling-based methods generate robot configurations (nodes) and then connect them to form a graph (roadmap) containing representative feasible pathways. A key step in PRM roadmap construction involves identifying a set of candidate neighbors for each node. Traditionally, these candidates are chosen to be the k-closest nodes based on a given distance metric. In this paper, we propose a new neighbor selection policy called LocalRand(k,K'), that first computes the K' closest nodes to a specified node and then selects k of those nodes at random. Intuitively, LocalRand attempts to benefit from random sampling while maintaining the higher levels of local planner success inherent to selecting more local neighbors. We provide a methodology for selecting the parameters k and K'. We perform an experimental comparison which shows that for both rigid and articulated robots, LocalRand results in roadmaps that are better connected than the traditional k-closest policy or a purely random neighbor selection policy. The cost required to achieve these results is shown to be comparable to k-closest. © 2012 IEEE.
    Citation
    McMahon T, Jacobs S, Boyd B, Tapia L, Amato NM (2012) Local randomization in neighbor selection improves PRM roadmap quality. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Available: http://dx.doi.org/10.1109/IROS.2012.6386061.
    Sponsors
    This research supported in part by NSF awards CRI-0551685, CCF-0833199, CCF-0830753, IIS-096053, IIS-0917266, by THECB NHARPaward 000512-0097-2009, by Chevron, IBM, Intel, Oracle/Sun and byAward KUS-C1-016-04, made by King Abdullah University of Science andTechnology (KAUST). Tapia supported in part by NIH Grant P20RR018754.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
    DOI
    10.1109/IROS.2012.6386061
    ae974a485f413a2113503eed53cd6c53
    10.1109/IROS.2012.6386061
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.