Show simple item record

dc.contributor.authorGirault, V.
dc.contributor.authorKanschat, G.
dc.contributor.authorRivière, B.
dc.date.accessioned2016-02-25T13:14:45Z
dc.date.available2016-02-25T13:14:45Z
dc.date.issued2014-01-01
dc.identifier.citationGirault V, Kanschat G, Rivière B (2014) Error analysis for a monolithic discretization of coupled Darcy and Stokes problems. Journal of Numerical Mathematics 22. Available: http://dx.doi.org/10.1515/jnma-2014-0005.
dc.identifier.issn1569-3953
dc.identifier.issn1570-2820
dc.identifier.doi10.1515/jnma-2014-0005
dc.identifier.urihttp://hdl.handle.net/10754/598209
dc.description.abstract© de Gruyter 2014. The coupled Stokes and Darcy equations are approximated by a strongly conservative finite element method. The discrete spaces are the divergence-conforming velocity space with matching pressure space such as the Raviart-Thomas spaces. This work proves optimal error estimate of the velocity in the L2 norm in the domain and on the interface. Lipschitz regularity of the interface is sufficient to obtain the results.
dc.description.sponsorshipSupported in part by the National Science Foundation through grants no. DMS-0810387 and DMS-0810422 and by the King Abdullah University of Science and Technology (KAUST) through award no. KUS-C1-016-04. Part of this research was prepared at the Institute for Mathematics and its Applications in Minneapolis. The first author was Visiting Professor at the Mathematics Department of Texas A & M University.
dc.publisherWalter de Gruyter GmbH
dc.subjectBeavers-Joseph-Saffman condition
dc.subjectDarcy-Stokes coupling
dc.subjectMixed finite elements
dc.titleError analysis for a monolithic discretization of coupled Darcy and Stokes problems
dc.typeArticle
dc.identifier.journalJournal of Numerical Mathematics
dc.contributor.institutionUniversite Pierre et Marie Curie, Paris, France
dc.contributor.institutionUniversitat Heidelberg, Heidelberg, Germany
dc.contributor.institutionRice University, Houston, United States
kaust.grant.numberKUS-C1-016-04


This item appears in the following Collection(s)

Show simple item record