Show simple item record

dc.contributor.authorGuermond, Jean-Luc
dc.contributor.authorPasquetti, Richard
dc.contributor.authorPopov, Bojan
dc.date.accessioned2016-02-25T13:14:36Z
dc.date.available2016-02-25T13:14:36Z
dc.date.issued2011-05
dc.identifier.citationGuermond J-L, Pasquetti R, Popov B (2011) Entropy viscosity method for nonlinear conservation laws. Journal of Computational Physics 230: 4248–4267. Available: http://dx.doi.org/10.1016/j.jcp.2010.11.043.
dc.identifier.issn0021-9991
dc.identifier.doi10.1016/j.jcp.2010.11.043
dc.identifier.urihttp://hdl.handle.net/10754/598201
dc.description.abstractA new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.
dc.description.sponsorshipThis material is based upon work supported by the National Science Foundation Grant DMS-0713929, DMS-0811041 and by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).
dc.publisherElsevier BV
dc.subjectCentral schemes
dc.subjectConservation laws
dc.subjectEntropy viscosity
dc.subjectEuler equations
dc.subjectFinite elements
dc.subjectFourier method
dc.subjectGodunov schemes
dc.subjectSpectral elements
dc.titleEntropy viscosity method for nonlinear conservation laws
dc.typeArticle
dc.identifier.journalJournal of Computational Physics
dc.contributor.institutionTexas A and M University, College Station, United States
dc.contributor.institutionCNRS Centre National de la Recherche Scientifique, Paris, France
kaust.grant.numberKUS-C1-016-04


This item appears in the following Collection(s)

Show simple item record