Type
ArticleKAUST Grant Number
KUS-C1-016-04Date
2011-05Permanent link to this record
http://hdl.handle.net/10754/598201
Metadata
Show full item recordAbstract
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.Citation
Guermond J-L, Pasquetti R, Popov B (2011) Entropy viscosity method for nonlinear conservation laws. Journal of Computational Physics 230: 4248–4267. Available: http://dx.doi.org/10.1016/j.jcp.2010.11.043.Sponsors
This material is based upon work supported by the National Science Foundation Grant DMS-0713929, DMS-0811041 and by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).Publisher
Elsevier BVJournal
Journal of Computational Physicsae974a485f413a2113503eed53cd6c53
10.1016/j.jcp.2010.11.043