Show simple item record

dc.contributor.authorGuermond, J. L.*
dc.contributor.authorPasquetti, R.*
dc.date.accessioned2016-02-25T13:14:34Zen
dc.date.available2016-02-25T13:14:34Zen
dc.date.issued2010-09-17en
dc.identifier.citationGuermond JL, Pasquetti R (2010) Entropy Viscosity Method for High-Order Approximations of Conservation Laws. Spectral and High Order Methods for Partial Differential Equations: 411–418. Available: http://dx.doi.org/10.1007/978-3-642-15337-2_39.en
dc.identifier.issn1439-7358en
dc.identifier.doi10.1007/978-3-642-15337-2_39en
dc.identifier.urihttp://hdl.handle.net/10754/598200en
dc.description.abstractA stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.en
dc.description.sponsorshipThis material is based upon work supported by the National Science Foun-dation grant DMS-0510650 and DMS-0811041 and partially supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST)en
dc.publisherSpringer Science + Business Mediaen
dc.titleEntropy Viscosity Method for High-Order Approximations of Conservation Lawsen
dc.typeBook Chapteren
dc.identifier.journalSpectral and High Order Methods for Partial Differential Equationsen
dc.contributor.institutionTexas A and M University, College Station, United States*
dc.contributor.institutionLIMSI Laobratoire d'Informatique pour la Mecanique et les Sciences de l'Ingenieur, Orsay, France*
dc.contributor.institutionUniversite Nice Sophia Antipolis, Nice, France*
kaust.grant.numberKUS-C1-016-04en


This item appears in the following Collection(s)

Show simple item record