• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Lai, Yi-Hsuan
    Chiu, Chih-Wei
    Chen, Jian-Ging
    Wang, Chun-Chieh
    Lin, Jiang-Jen
    Lin, King-Fu
    Ho, Kuo-Chuan
    Date
    2009-10
    Permanent link to this record
    http://hdl.handle.net/10754/598196
    
    Metadata
    Show full item record
    Abstract
    Two kinds of gel-type dye-sensitized solar cells (DSSCs), composed of two types of electrolytes, were constructed and the respective cell performance was evaluated in this study. One electrolyte, TEOS-Triton X-100 gel, was based on a hybrid organic/inorganic gel electrolyte made by the sol-gel method and the other was based on poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP) copolymer. TEOS-Triton X-100 gel was based on the reticulate structure of silica, formed by hydrolysis, and condensation of tetraethoxysilane (TEOS), while its organic subphase was a mixture of surfactant (Triton X-100) and ionic liquid electrolytes. Both DSSC gel-type electrolytes were composed of iodine, 1-propy-3-methyl-imidazolium iodide, and 3-methoxypropionitrile to create the redox couple of I3 -/I-. Based on the results obtained from the I-V characteristics, it was found that the optimal iodine concentrations for the TEOS-Triton X-100 gel electrolyte and PVDF-HFP gel electrolyte are 0.05 M and 0.1 M, respectively. Although the increase in the iodine concentration could enhance the short-circuit current density (JSC), a further increase in the iodine concentration would reduce the JSC due to increased dark current. Therefore, the concentration of I2 is a significant factor in determining the performance of DSSCs. In order to enhance cell performance, the addition of nanosilicate platelets (NSPs) in the above-mentioned gel electrolytes was investigated. By incorporating NSP-Triton X-100 into the electrolytes, the JSC of the cells increased due to the decrease of diffusion resistance, while the open circuit voltage (VOC) remained almost the same. As the loading of the NSP-Triton X-100 in the TEOS-Triton X-100 gel electrolyte increased to 0.5 wt%, the JSC and the conversion efficiency increased from 8.5 to 12 mA/cm2 and from 3.6% to 4.7%, respectively. However, the JSC decreased as the loading of NSP-Triton X-100 exceeded 0.5 wt%. At higher NSP-Triton X-100 loading, NSPs acted as a barrier interface between the electrolyte and the dye molecules, hindering electron transfer, hence, reducing the cell's photocurrent density. The same behavior was also observed in the PVDF-HFP gel electrolyte DSSC system. © 2009 Elsevier B.V. All rights reserved.
    Citation
    Lai Y-H, Chiu C-W, Chen J-G, Wang C-C, Lin J-J, et al. (2009) Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte. Solar Energy Materials and Solar Cells 93: 1860–1864. Available: http://dx.doi.org/10.1016/j.solmat.2009.06.027.
    Sponsors
    This work was financially supported by the National Science Council (NSC) of Taiwan, the Republic of China, under Grant NSC 97-2120-M-002-012. This work was partially supported by the King Abdullah University of Science and Technology (KAUST) through the Global Research Partnership Centers-in-Development grant (KAUST GRP-CID). Some instruments used in this study were supported by the Academia Sinica, Taipei, Taiwan, the Republic of China, under Grant AS-97-TP-A08.
    Publisher
    Elsevier BV
    Journal
    Solar Energy Materials and Solar Cells
    DOI
    10.1016/j.solmat.2009.06.027
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.solmat.2009.06.027
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.