Show simple item record

dc.contributor.authorWang, Xihua
dc.contributor.authorKoleilat, Ghada I.
dc.contributor.authorFischer, Armin
dc.contributor.authorTang, Jiang
dc.contributor.authorDebnath, Ratan
dc.contributor.authorLevina, Larissa
dc.contributor.authorSargent, Edward H.
dc.date.accessioned2016-02-25T13:14:17Z
dc.date.available2016-02-25T13:14:17Z
dc.date.issued2011-09-27
dc.identifier.citationWang X, Koleilat GI, Fischer A, Tang J, Debnath R, et al. (2011) Enhanced Open-Circuit Voltage in Visible Quantum Dot Photovoltaics by Engineering of Carrier-Collecting Electrodes. ACS Applied Materials & Interfaces 3: 3792–3795. Available: http://dx.doi.org/10.1021/am201097p.
dc.identifier.issn1944-8244
dc.identifier.issn1944-8252
dc.identifier.pmid21936534
dc.identifier.doi10.1021/am201097p
dc.identifier.urihttp://hdl.handle.net/10754/598184
dc.description.abstractColloidal quantum dots (CQDs) enable multijunction solar cells using a single material programmed using the quantum size effect. Here we report the systematic engineering of 1.6 eV PbS CQD solar cells, optimal as the front cell responsible for visible-wavelength harvesting in tandem photovoltaics. We rationally optimize each of the device's collecting electrodes-the heterointerface with electron-accepting TiO2 and the deep-work-function hole-collecting MoO3 for ohmic contact-for maximum efficiency. We report an open-circuit voltage of 0.70 V, the highest observed in a colloidal quantum dot solar cell operating at room temperature. We report an AM1.5 solar power conversion efficiency of 3.5%, the highest observed in >1.5 eV bandgap CQD PV device. © 2011 American Chemical Society.
dc.description.sponsorshipThis publication is based in part on work supported by Award KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. We thank Angstrom Engineering and Innovative Technology for useful discussions regarding material deposition methods and control of glovebox environment, respectively.
dc.publisherAmerican Chemical Society (ACS)
dc.titleEnhanced Open-Circuit Voltage in Visible Quantum Dot Photovoltaics by Engineering of Carrier-Collecting Electrodes
dc.typeArticle
dc.identifier.journalACS Applied Materials & Interfaces
dc.contributor.institutionUniversity of Toronto, Toronto, Canada
kaust.grant.numberKUS-11-009-21
dc.date.published-online2011-09-27
dc.date.published-print2011-10-26


This item appears in the following Collection(s)

Show simple item record