Empirical evaluation of mapping functions for navigation in virtual reality using phones with integrated sensors

Type
Conference Paper

Authors
Benzina, Amal
Dey, Arindam
Toennis, Marcus
Klinker, Gudrun

KAUST Grant Number
UK-c0020

Date
2012

Abstract
Mobile phones provide an interesting all-in-one alternative for 3D input devices in virtual environments. Mobile phones are becoming touch sensitive and spatially aware, and they are now part of our daily activities. We present Phone-Based Motion Control, a novel one-handed travel technique for a virtual environment. The technique benefits from the touch capability offered by growing number of mobile phones to change viewpoint translation in virtual environments, while the orientation of the viewpoint is controlled by built-in sensors in the mobile phone. The travel interaction separates translation (touch based translation control) and rotation (steer based rotation control), putting each set of degrees of freedom (DOF) to a separate interaction technique (separability). This paper examines, how many DOF are needed to perform the travel task as easy and comfortable as possible. It also investigates different mapping functions between the user's actions on the mobile phone and the viewpoint change in the virtual environment. Therefore, four techniques are implemented: rotate by heading, rotate by roll, rotate by roll with fixed horizon and a merged rotation. Each technique has either 4 or 5 DOF and different mappings between phone and viewpoint coordinates in the virtual environment. We perform an extensive user study to explore different aspects related to the travel techniques in terms of DOF and mapping functions. Results of the user evaluation show that 4 DOF techniques seem to perform better the travel task. Even though, the results were not statistically decisive in favor of the usage of the mobile roll to control the viewpoint heading in the virtual environment despite the good results, there is a clear tendency from the users to prefer the mobile roll as the desired mapping. Copyright 2012 ACM.

Citation
Benzina A, Dey A, Toennis M, Klinker G (2012) Empirical evaluation of mapping functions for navigation in virtual reality using phones with integrated sensors. Proceedings of the 10th asia pacific conference on Computer human interaction - APCHI ’12. Available: http://dx.doi.org/10.1145/2350046.2350078.

Acknowledgements
Authors would like to thank the participants for their voluntaryparticipation in the user studies.This publication is based on work supported by Award No.UK-c0020, made by King Abdullah University of Scienceand Technology (KAUST).

Publisher
Association for Computing Machinery (ACM)

Journal
Proceedings of the 10th asia pacific conference on Computer human interaction - APCHI '12

DOI
10.1145/2350046.2350078

Permanent link to this record