• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Emergence of the bifurcation structure of a Langmuir–Blodgett transfer model

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Köpf, Michael H
    Thiele, Uwe
    KAUST Grant Number
    KUK-C1-013-04
    Date
    2014-10-07
    Online Publication Date
    2014-10-07
    Print Publication Date
    2014-11-01
    Permanent link to this record
    http://hdl.handle.net/10754/598155
    
    Metadata
    Show full item record
    Abstract
    © 2014 IOP Publishing Ltd & London Mathematical Society. We explore the bifurcation structure of a modified Cahn-Hilliard equation that describes a system that may undergo a first-order phase transition and is kept permanently out of equilibrium by a lateral driving. This forms a simple model, e.g., for the deposition of stripe patterns of different phases of surfactant molecules through Langmuir-Blodgett transfer. Employing continuation techniques the bifurcation structure is numerically investigated using the non-dimensional transfer velocity as the main control parameter. It is found that the snaking structure of steady front states is intertwined with a large number of branches of time-periodic solutions that emerge from Hopf or period-doubling bifurcations and end in global bifurcations (sniper and homoclinic). Overall the bifurcation diagram has a harp-like appearance. This is complemented by a two-parameter study in non-dimensional transfer velocity and domain size (as a measure of the distance to the phase transition threshold) that elucidates through which local and global codimension 2 bifurcations the entire harp-like structure emerges.
    Citation
    Köpf MH, Thiele U (2014) Emergence of the bifurcation structure of a Langmuir–Blodgett transfer model. Nonlinearity 27: 2711–2734. Available: http://dx.doi.org/10.1088/0951-7715/27/11/2711.
    Sponsors
    The authors are grateful to the Newton Institute in Cambridge, UK, for its hospitality during their stay at the programme 'Mathematical Modelling and Analysis of Complex Fluids and Active Media in Evolving Domains' where part of this work was done. MHK acknowledges the support by the Human Frontier Science Program (Grant RGP0052/2009-C). This publication is based in part on work supported by Award No KUK-C1-013-04, made by the King Abdullah University of Science and Technology (KAUST), and LabEX ENS-ICFP: ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL*.
    Publisher
    IOP Publishing
    Journal
    Nonlinearity
    DOI
    10.1088/0951-7715/27/11/2711
    ae974a485f413a2113503eed53cd6c53
    10.1088/0951-7715/27/11/2711
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.