• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Browne, David A.
    Mazumder, Baishakhi
    Wu, Yuh-Renn
    Speck, James S.
    Date
    2015-05-14
    Permanent link to this record
    http://hdl.handle.net/10754/598147
    
    Metadata
    Show full item record
    Abstract
    © 2015 AIP Publishing LLC. Unipolar-light emitting diode like structures were grown by NH3 molecular beam epitaxy on c plane (0001) GaN on sapphire templates. Studies were performed to experimentally examine the effect of random alloy fluctuations on electron transport through quantum well active regions. These unipolar structures served as a test vehicle to test our 2D model of the effect of compositional fluctuations on polarization-induced barriers. Variables that were systematically studied included varying quantum well number from 0 to 5, well thickness of 1.5 nm, 3 nm, and 4.5 nm, and well compositions of In0.14Ga0.86N and In0.19Ga0.81N. Diode-like current voltage behavior was clearly observed due to the polarization-induced conduction band barrier in the quantum well region. Increasing quantum well width and number were shown to have a significant impact on increasing the turn-on voltage of each device. Temperature dependent IV measurements clearly revealed the dominant effect of thermionic behavior for temperatures from room temperature and above. Atom probe tomography was used to directly analyze parameters of the alloy fluctuations in the quantum wells including amplitude and length scale of compositional variation. A drift diffusion Schrödinger Poisson method accounting for two dimensional indium fluctuations (both in the growth direction and within the wells) was used to correctly model the turn-on voltages of the devices as compared to traditional 1D simulation models.
    Citation
    Browne DA, Mazumder B, Wu Y-R, Speck JS (2015) Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy. Journal of Applied Physics 117: 185703. Available: http://dx.doi.org/10.1063/1.4919750.
    Sponsors
    This work was supported by funding from the Solid State Lighting Program at UCSB and from the King Abdullah University of Science and Technology and the King Abdullah Center of Science and Technology. This work made use of the Central Facilities at UCSB supported by the NSF MRSEC program. A portion of this work was done in the UCSB Nanofabrication Facility, part of the NSF-funded National Nanotechnology Infrastructure Network. The work in NTU was support by Ministry of Science and Technology in Taiwan for the financial support, under Grant No. MOST-102-2221-E-002-194-MY3.
    Publisher
    AIP Publishing
    Journal
    Journal of Applied Physics
    DOI
    10.1063/1.4919750
    ae974a485f413a2113503eed53cd6c53
    10.1063/1.4919750
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.