• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Sachs-Quintana, I. T.
    Heumüller, Thomas
    Mateker, William R.
    Orozco, Darian E.
    Cheacharoen, Rongrong
    Sweetnam, Sean
    Brabec, Christoph J. cc
    McGehee, Michael D.
    KAUST Grant Number
    KUS-C1-015-21
    Date
    2014-03-24
    Online Publication Date
    2014-03-24
    Print Publication Date
    2014-07
    Permanent link to this record
    http://hdl.handle.net/10754/598145
    
    Metadata
    Show full item record
    Abstract
    Long-term stability of polymer solar cells is determined by many factors, one of which is thermal stability. Although many thermal stability studies occur far beyond the operating temperature of a solar cell which is almost always less than 65 °C, thermal degradation is studied at temperatures that the solar cell would encounter in real-world operating conditions. At these temperatures, movement of the polymer and fullerenes, along with adhesion of the polymer to the back contact, creates a barrier for electron extraction. The polymer barrier can be removed and the performance can be restored by peeling off the electrode and depositing a new one. X-ray photoelectron spectroscopy measurements reveal a larger amount of polymer adhered to electrodes peeled from aged devices than electrodes peeled from fresh devices. The degradation caused by hole-transporting polymer adhering to the electrode can be suppressed by using an inverted device where instead of electrons, holes are extracted at the back metal electrode. The problem can be ultimately eliminated by choosing a polymer with a high glass transition temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Citation
    Sachs-Quintana IT, Heumüller T, Mateker WR, Orozco DE, Cheacharoen R, et al. (2014) Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells. Advanced Functional Materials 24: 3978–3985. Available: http://dx.doi.org/10.1002/adfm.201304166.
    Sponsors
    The authors would like to acknowledge Koen Vandewal, and Chuck Hitzman for sharing their expertise on sub-bandgap EQE, and XPS, respectively. The authors would also like to thank Christine McGuiness at Plextronics for supplying ICBA and for her helpful discussions. TH gratefully acknowledges the "DAAD Doktorantenstipedium" and the SFB 953 "Synthetic Carbon Allotropes" This publication was based on work supported by the Center for Advanced Molecular Photovoltaics (CAMP) (Award No KUS-C1-015-21), made by King Abdullah University of Science and Technology (KAUST).
    Publisher
    Wiley
    Journal
    Advanced Functional Materials
    DOI
    10.1002/adfm.201304166
    ae974a485f413a2113503eed53cd6c53
    10.1002/adfm.201304166
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.