• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Efficient Implementations of Molecular Dynamics Simulations for Lennard-Jones Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Watanabe, H.
    Suzuki, M.
    Ito, N.
    KAUST Grant Number
    KUK-I1-005-04
    Date
    2011-08-01
    Permanent link to this record
    http://hdl.handle.net/10754/598107
    
    Metadata
    Show full item record
    Abstract
    Efficient implementations of the classical molecular dynamics (MD) method for Lennard-Jones particle systems are considered. Not only general algorithms but also techniques that are efficient for some specific CPU architectures are also explained. A simple spatialdecomposition-based strategy is adopted for parallelization. By utilizing the developed code, benchmark simulations are performed on a HITACHI SR16000/J2 system consisting of IBM POWER6 processors which are 4.7 GHz at the National Institute for Fusion Science (NIFS) and an SGI Altix ICE 8400EX system consisting of Intel Xeon processors which are 2.93 GHz at the Institute for Solid State Physics (ISSP), the University of Tokyo. The parallelization efficiency of the largest run, consisting of 4.1 billion particles with 8192 MPI processes, is about 73% relative to that of the smallest run with 128 MPI processes at NIFS, and it is about 66% relative to that of the smallest run with 4 MPI processes at ISSP. The factors causing the parallel overhead are investigated. It is found that fluctuations of the execution time of each process degrade the parallel efficiency. These fluctuations may be due to the interference of the operating system, which is known as OS Jitter.
    Citation
    Watanabe H, Suzuki M, Ito N (2011) Efficient Implementations of Molecular Dynamics Simulations for Lennard-Jones Systems. Progress of Theoretical Physics 126: 203–235. Available: http://dx.doi.org/10.1143/ptp.126.203.
    Sponsors
    The authors would like to thank Y. Kanada, S. Takagi, and T. Boku for fruitfuldiscussions. Some parts of the implementation techniques are owing to N. Sodaand M. Itakura. HW thanks M. Isobe for useful information of past studies. Thiswork was supported by KAUST GRP (KUK-I1-005-04), Grants-in-Aid for ScientificResearch (Contracts No. 19740235), and the NIFS Collaboration Research program(NIFS10KTBS006). The computations were carried out using the facilitiesof National Institute for Fusion Science; the Information Technology Center, theUniversity of Tokyo; the Supercomputer Center, Institute for Solid State Physics,University of Tokyo; and the Research Institute for Information Technology, KyushuUniversity.
    Publisher
    Oxford University Press (OUP)
    Journal
    Progress of Theoretical Physics
    DOI
    10.1143/ptp.126.203
    ae974a485f413a2113503eed53cd6c53
    10.1143/ptp.126.203
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.