• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Efficient computation of smoothing splines via adaptive basis sampling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ma, Ping
    Huang, Jianhua Z.
    Zhang, Nan
    Date
    2015-06-24
    Online Publication Date
    2015-06-24
    Print Publication Date
    2015-09
    Permanent link to this record
    http://hdl.handle.net/10754/598102
    
    Metadata
    Show full item record
    Abstract
    © 2015 Biometrika Trust. Smoothing splines provide flexible nonparametric regression estimators. However, the high computational cost of smoothing splines for large datasets has hindered their wide application. In this article, we develop a new method, named adaptive basis sampling, for efficient computation of smoothing splines in super-large samples. Except for the univariate case where the Reinsch algorithm is applicable, a smoothing spline for a regression problem with sample size n can be expressed as a linear combination of n basis functions and its computational complexity is generally O(n$^{3}$). We achieve a more scalable computation in the multivariate case by evaluating the smoothing spline using a smaller set of basis functions, obtained by an adaptive sampling scheme that uses values of the response variable. Our asymptotic analysis shows that smoothing splines computed via adaptive basis sampling converge to the true function at the same rate as full basis smoothing splines. Using simulation studies and a large-scale deep earth core-mantle boundary imaging study, we show that the proposed method outperforms a sampling method that does not use the values of response variables.
    Citation
    Ma P, Huang JZ, Zhang N (2015) Efficient computation of smoothing splines via adaptive basis sampling. Biometrika 102: 631–645. Available: http://dx.doi.org/10.1093/biomet/asv009.
    Sponsors
    The first author thanks Chong Gu for many helpful discussions. Ma’s work was partially supportedby the National Science Foundation and the U.S. Department of Energy. Huang’s workwas partially supported by the National Science Foundation and King Abdullah University ofScience and Technology.
    Publisher
    Oxford University Press (OUP)
    Journal
    Biometrika
    DOI
    10.1093/biomet/asv009
    ae974a485f413a2113503eed53cd6c53
    10.1093/biomet/asv009
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.