Show simple item record

dc.contributor.authorWheeler, Mary F.
dc.contributor.authorWildey, Tim
dc.contributor.authorXue, Guangri
dc.date.accessioned2016-02-25T13:12:37Z
dc.date.available2016-02-25T13:12:37Z
dc.date.issued2010-09-26
dc.identifier.citationWheeler MF, Wildey T, Xue G (2010) Efficient algorithms for multiscale modeling in porous media. Numerical Linear Algebra with Applications 17: 771–785. Available: http://dx.doi.org/10.1002/nla.742.
dc.identifier.issn1070-5325
dc.identifier.doi10.1002/nla.742
dc.identifier.urihttp://hdl.handle.net/10754/598097
dc.description.abstractWe describe multiscale mortar mixed finite element discretizations for second-order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mortar basis and extend this concept to nonlinear interface operators. We present a multiscale preconditioning strategy to minimize the computational cost associated with construction of the multiscale mortar basis. We also discuss the use of appropriate quadrature rules and approximation spaces to reduce the saddle point system to a cell-centered pressure scheme. In particular, we focus on multiscale mortar multipoint flux approximation method for general hexahedral grids and full tensor permeabilities. Numerical results are presented to verify the accuracy and efficiency of these approaches. © 2010 John Wiley & Sons, Ltd.
dc.description.sponsorshipContract/grant sponsor: Publishing Arts Research Council; contract grant/number: 98-1846389Contract/grant sponsor: DOE Energy Frontier Research Center; contract/grant number: DE-SC0001114Contract/grant sponsor: NSF-CDI; contract/grant number: DMS 0835745Contract/grant sponsor: King Abdullah University of Science and Technology; contract/grant number: (KAUST)-AEA-UTA08-687Contract/grant sponsor: KAUST; contract/grant number: KUS-F1-032-04
dc.publisherWiley
dc.subjectDomain decomposition
dc.subjectMortar finite element
dc.subjectMultipoint flux approximation
dc.subjectMultiscale
dc.subjectSingle phase flow
dc.titleEfficient algorithms for multiscale modeling in porous media
dc.typeArticle
dc.identifier.journalNumerical Linear Algebra with Applications
dc.contributor.institutionUniversity of Texas at Austin, Austin, United States
kaust.grant.number(KAUST)-AEA-UTA08-687
kaust.grant.numberKUS-F1-032-04


This item appears in the following Collection(s)

Show simple item record