• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Effects of viscoelasticity in the high Reynolds number cylinder wake

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Richter, David
    Iaccarino, Gianluca
    Shaqfeh, Eric S. G.
    Date
    2012-01-16
    Online Publication Date
    2012-01-16
    Print Publication Date
    2012-02
    Permanent link to this record
    http://hdl.handle.net/10754/598093
    
    Metadata
    Show full item record
    Abstract
    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.
    Citation
    Richter D, Iaccarino G, Shaqfeh ESG (2012) Effects of viscoelasticity in the high Reynolds number cylinder wake. Journal of Fluid Mechanics 693: 297–318. Available: http://dx.doi.org/10.1017/jfm.2011.531.
    Sponsors
    The authors would like to acknowledge the Army High Performance Computing Research Center for Agility, Survivability and Informatics, Award No. W911NF-07-2-0027, High Performance Technologies Inc., and Department of the Army (Prime) for partial financial and computational support. In addition, this research has been funded in part by a KAUST research grant under the KAUST-Stanford Academic Excellence Alliance program. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the KAUST university. Finally, the authors acknowledge the following award for providing computing resources that have contributed to the research results reported within this paper: MRI-R2: Acquisition of a Hybrid CPU/GPU and Visualization Cluster for Multidisciplinary Studies in Transport Physics with Uncertainty Quantification. This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).
    Publisher
    Cambridge University Press (CUP)
    Journal
    Journal of Fluid Mechanics
    DOI
    10.1017/jfm.2011.531
    ae974a485f413a2113503eed53cd6c53
    10.1017/jfm.2011.531
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.