• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Effects of supported metallocene catalyst active center multiplicity on antioxidant-stabilized ethylene homo- and copolymers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Atiqullah, Muhammad
    Cibulková, Zuzana
    Černá, Andrea
    Šimon, Peter
    Hussain, Ikram
    Al-Harthi, Mamdouh A.
    Anantawaraskul, Siripon
    Date
    2014-10-09
    Online Publication Date
    2014-10-09
    Print Publication Date
    2015-01
    Permanent link to this record
    http://hdl.handle.net/10754/598090
    
    Metadata
    Show full item record
    Abstract
    © 2014 Akadémiai Kiadó, Budapest, Hungary. A silica-supported bis(n-butylcyclopentadienyl) zirconium dichloride [( n BuCp)2ZrCl2] catalyst was synthesized. This was used to prepare an ethylene homopolymer and an ethylene-1-hexene copolymer. The active center multiplicity of this catalyst was modeled by deconvoluting the copolymer molecular mass distribution and chemical composition distribution. Five different active site types were predicted, which matched the successive self-nucleation and annealing temperature peaks. The thermo-oxidative melt stability, with and without Irganox 1010 and Irgafos 168, of the above polyethylenes was investigated using nonisothermal differential scanning calorimetric (DSC) experiments at 150 °C. This is a temperature that ensures complete melting of the samples and avoids the diffusivity of oxygen to interfere into polyethylene crystallinity and its thermo-oxidative melt degradation. The oxidation parameters such as onset oxidation temperature, induction period, protection factor, and S-factor were determined by combining theoretical modeling with the DSC experiments. Subsequently, these findings were discussed considering catalyst active center multiplicity and polymer microstructure, particularly average ethylene sequence length. Several insightful results, which have not been reported earlier in the literature, were obtained. The antioxidant effect, for each polymer, varied as (Irganox + Irgafos) ≈ Irganox > Irgafos > Neat polymer. The as-synthesized homopolymer turned out to be almost twice as stable as the corresponding copolymer. The antioxidant(s) in the copolymer showed higher antioxidant effectiveness (AEX) than those in the homopolymer. Irganox exhibited more AEX than Irgafos. To the best of our knowledge, such findings have not been reported earlier in the literature. However, mixed with Irganox or Irgafos, their melt oxidation stability was comparable. The homopolymer, as per the calculated S-factor, showed Irganox-Irgafos synergistic effect five times that of the copolymer. This illustrates how the transition in backbone structure, from exceedingly high to low ethylene sequence length, influences antioxidant synergistic performance. Finally, this study shows a DSC-aided approach that can elucidate the effect of polyethylene structural backbone on its thermo-oxidative melt degradation as well as antioxidant synergism in a facile fashion.
    Citation
    Atiqullah M, Cibulková Z, Černá A, Šimon P, Hussain I, et al. (2014) Effects of supported metallocene catalyst active center multiplicity on antioxidant-stabilized ethylene homo- and copolymers. Journal of Thermal Analysis and Calorimetry 119: 581–595. Available: http://dx.doi.org/10.1007/s10973-014-4167-7.
    Sponsors
    The authors acknowledge the financial supportprovided by King Abdulaziz City for Science and Technology(KACST) via the Science and Technology Unit at King Fahd Uni-versity of Petroleum and Minerals (KFUPM) through Project Number08-PET90-4 as part of the National Science and Technology Inno-vation Plan. The technical assistance provided by the followingKFUPM centers—Center of Refining and Petrochemicals (CRP) andCenter for Engineering Research at Research Institute, and the Centerof Research Excellence in Petroleum Refining and Petrochemicals(CoRE-PRP)—at Dhahran, Saudi Arabia; NMR Core Laboratory,Thuwal, King Abdullah University of Science and Technology(KAUST), Saudi Arabia; the Department of Chemical Engineering atKFUPM and the Department of Chemical Engineering at KasetsartUniversity, Thailand; and Institute of Physical Chemistry andChemical Physics, Slovak University of Technology, Slovak Republicis also gratefully acknowledged. Messrs. Anwar Hossaen and SarathP. Unnikari are appreciated for technical support
    Publisher
    Springer Nature
    Journal
    Journal of Thermal Analysis and Calorimetry
    DOI
    10.1007/s10973-014-4167-7
    ae974a485f413a2113503eed53cd6c53
    10.1007/s10973-014-4167-7
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.