• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Effects of supported (nBuCp)2ZrCl2 catalyst active center multiplicity on crystallization kinetics of ethylene homo- and copolymers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Atiqullah, Muhammad
    Adamu, Sagir
    Hossain, Mohammad Mozahar
    Al-Harthi, Mamdouh A.
    Anantawaraskul, Siripon
    Hossaen, Anwar
    Date
    2014-07
    Permanent link to this record
    http://hdl.handle.net/10754/598089
    
    Metadata
    Show full item record
    Abstract
    Two different supported zirconocene, that is, bis(n-butylcyclopentadienyl) zirconium dichloride (nBuCp)2ZrCl2, catalysts were synthesized. Each catalyst was used to prepare one ethylene homopolymer and one ethylene-1-hexene copolymer. Catalyst active center multiplicity and polymer crystallization kinetics were modeled. Five separate active center types were predicted, which matched the successive self-nucleation and annealing (SSA) peak temperatures. The predicted crystallinity well matched the differential scanning calorimetric (DSC) values for a single Avrami-Erofeev index, which ranged between 2 and 3 for the polymers experimented. The estimated apparent crystallization activation energy Ea did not vary with cooling rates, relative crystallinity α, and crystallization time or temperature. Therefore, the concept of variable/instantaneous activation energy was not found to hold. Ea linearly increased with the weight average lamellar thickness Lwav DSC-GT; and for each homopolymer, it exceeded that of the corresponding copolymer. Higher Ea, hence slower crystallization, was identified as a pre-requisite to attain higher crystallinity. Crystallization parameters were correlated to polymer backbone parameters, which are influenced by catalyst active center multiplicity. © 2013 Taiwan Institute of Chemical Engineers.
    Citation
    Atiqullah M, Adamu S, Hossain MM, Al-Harthi MA, Anantawaraskul S, et al. (2014) Effects of supported (nBuCp)2ZrCl2 catalyst active center multiplicity on crystallization kinetics of ethylene homo- and copolymers. Journal of the Taiwan Institute of Chemical Engineers 45: 1982–1991. Available: http://dx.doi.org/10.1016/j.jtice.2013.11.005.
    Sponsors
    The authors acknowledge the financial support provided by King Abdulaziz City for Science and Technology (KACST) via the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) through Project Number 08-PET90-4 as part of the National Science and Technology Innovation Plan. The technical assistance provided by the following KFUPM centers—Center of Refining & Petrochemicals (CRP) and Center for Engineering Research at Research Institute, and the Center of Research Excellence in Petroleum Refining & Petrochemicals (CoRE-PRP)—at Dhahran, Saudi Arabia; NMR Core Laboratory, Thuwal, King Abdullah University of Science & Technology (KAUST), Saudi Arabia; and the Department of Chemical Engineering at KFUPM and the Department of Chemical Engineering at Kasetsart University, Thailand is also gratefully acknowledged.
    Publisher
    Elsevier BV
    Journal
    Journal of the Taiwan Institute of Chemical Engineers
    DOI
    10.1016/j.jtice.2013.11.005
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jtice.2013.11.005
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.