Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells
Type
ArticleAuthors
Ardalan, PendarBrennan, Thomas P.
Lee, Han-Bo-Ram
Bakke, Jonathan R.
Ding, I-Kang
McGehee, Michael D.
Bent, Stacey F.
Date
2011-02-07Online Publication Date
2011-02-07Print Publication Date
2011-02-22Permanent link to this record
http://hdl.handle.net/10754/598085
Metadata
Show full item recordAbstract
Quantum dot sensitized solar cells (QDSSCs) are of interest for solar energy conversion because of their tunable band gap and promise of stable, low-cost performance. We have investigated the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state QDSSCs. CdS quantum dots ∼2 to ∼6 nm in diameter were grown on SAM-passivated planar or nanostructured TiO 2 surfaces by successive ionic layer adsorption and reaction (SILAR), and photovoltaic devices were fabricated with spiro-OMeTAD as the solid-state hole conductor. X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, water contact angle measurements, ellipsometry, and electrical measurements were employed to characterize the materials and the resulting device performance. The data indicate that the nature of the SAM tailgroup does not significantly affect the uptake of CdS quantum dots on TiO2 nor their optical properties, but the presence of the SAM does have a significant effect on the photovoltaic device performance. Interestingly, we observe up to ∼3 times higher power conversion efficiencies in devices with a SAM compared to those without the SAM. © 2011 American Chemical Society.Citation
Ardalan P, Brennan TP, Lee H-B-R, Bakke JR, Ding I-K, et al. (2011) Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells. ACS Nano 5: 1495–1504. Available: http://dx.doi.org/10.1021/nn103371v.Sponsors
We would like to thank the Stanford Nanocharacterization Laboratory (SNL) staff and the staff of the Center for Polymer Interfaces and Macromolecular Assemblies (CPIMA) for their support. This publication was based on work supported by the Center for Advanced Molecular Photovoltaics (Award No. KUS-C1-015-21), made by King Abdullah University of Science and Technology (KAUST).Publisher
American Chemical Society (ACS)Journal
ACS NanoPubMed ID
21299223ae974a485f413a2113503eed53cd6c53
10.1021/nn103371v
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.
- Authors: Mali SS, Desai SK, Dalavi DS, Betty CA, Bhosale PN, Patil PS
- Issue date: 2011 Oct
- Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices.
- Authors: Zhang Y, Xie T, Jiang T, Wei X, Pang S, Wang X, Wang D
- Issue date: 2009 Apr 15
- Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells.
- Authors: Zhu G, Cheng Z, Lv T, Pan L, Zhao Q, Sun Z
- Issue date: 2010 Jul
- Supersensitization of CdS quantum dots with a near-infrared organic dye: toward the design of panchromatic hybrid-sensitized solar cells.
- Authors: Choi H, Nicolaescu R, Paek S, Ko J, Kamat PV
- Issue date: 2011 Nov 22
- Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO₂ Based CdS Quantum Dot Sensitized Solar Cells.
- Authors: Atif M, Farooq WA, Fatehmulla A, Aslam M, Ali SM
- Issue date: 2015 Jan 19