Show simple item record

dc.contributor.authorCates, Nichole C.
dc.contributor.authorGysel, Roman
dc.contributor.authorDahl, Jeremy E. P.
dc.contributor.authorSellinger, Alan
dc.contributor.authorMcGehee, Michael D.
dc.date.accessioned2016-02-25T13:12:15Z
dc.date.available2016-02-25T13:12:15Z
dc.date.issued2010-06-08
dc.identifier.citationCates NC, Gysel R, Dahl JEP, Sellinger A, McGehee MD (2010) Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends. Chem Mater 22: 3543–3548. Available: http://dx.doi.org/10.1021/cm1008619.
dc.identifier.issn0897-4756
dc.identifier.issn1520-5002
dc.identifier.doi10.1021/cm1008619
dc.identifier.urihttp://hdl.handle.net/10754/598079
dc.description.abstractFullerenes have been shown to intercalate between the side chains of many crystalline and semicrystalline polymers and to affect the properties of polymer:fullerene bulk heterojunction solar cells. Here we present the first in-depth study of intercalation in an amorphous polymer. We study blends of the widely studied amorphous polymer poly(2-methoxy-5-(3studied amorphous polymer poly(,7·studied amorphous polymer poly(-dimethyloctyloxy)-p-phenylene vinylene) (MDMO-PPV) with a variety of molecules using photoluminescence measurements, scanning electron microscopy, and space-charge limited current mobility measurements. The blends with elevated hole mobilities exhibit complete photoluminescence quenching and show no phase separation in a scanning electron microscope. We conclude that intercalation occurs in MDMO-PPV:fullerene blends and is responsible for the increase in the MDMO-PPV hole mobility by several orders of magnitude when it is blended with fullerenes, despite the dilution of the hole-conducting polymer with an electron acceptor. © 2010 American Chemical Society.
dc.description.sponsorshipThis work was primarily supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract DE-AC02-76SF00515, and by the Center for Advanced Molecular Photovoltaics (Award No KUS-C1-015-21), made by King Abdullah University of Science and Technology (KAUST). Additional funding was provided by the National Science Foundation (N.C.C.) and the Swiss National Science Foundation (R.G.). The authors also acknowledge Prof. Nicholas Melosh, Jason Fabbri, Zach Beiley, and Eric Hoke for fruitful discussions.
dc.publisherAmerican Chemical Society (ACS)
dc.titleEffects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends
dc.typeArticle
dc.identifier.journalChemistry of Materials
dc.contributor.institutionStanford University, Palo Alto, United States
dc.contributor.institutionGeballe Laboratory for Advanced Materials, Stanford, United States
kaust.grant.numberKUS-C1-015-21
kaust.grant.fundedcenterCenter for Advanced Molecular Photovoltaics (CAMP)


This item appears in the following Collection(s)

Show simple item record