• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Vaughn, Justin T.
    Koros, William J.
    Johnson, J.R.
    Karvan, Oguz
    KAUST Grant Number
    KUS-I1-011-21
    Date
    2012-05
    Permanent link to this record
    http://hdl.handle.net/10754/598064
    
    Metadata
    Show full item record
    Abstract
    A fluorinated, 6FDA based polyamide-imide is investigated for the purification of CH 4 from CO 2 and H 2S containing gas streams. Dense polymer films were thermally annealed and showed that increased annealing temperatures at constant annealing time caused transport behavior that does not resemble physical aging. Free volume increased after annealing at 200°C for 24h relative to annealing at 150°C for the same time. CO 2 and CH 4 permeabilities and diffusivities did not decrease as a result of the higher annealing temperature, and in fact, were shown to increase slightly. A change to the intrinsic microstructure that cannot be described by simple, densification based physical aging is hypothesized to be the reason for this trend. Furthermore, annealing increased CO 2 induced plasticization resistance and a temperature of 200°C was shown to have the greatest effect on plasticization suppression. Annealing at 200°C for 24h suppressed pure gas CO 2 plasticization up to 450psia. Fluorescence spectroscopy revealed increased intramolecular charge transfer, which is presumably due to increased electron conjugation over the N-phenyl bond. Additionally, intermolecular charge transfer increased with thermal annealing, as inferred from fluorescence intensity measurements and XRD patterns. 50/50 CO 2/CH 4 mixed gas permeation measurements reveal stable separation performance up to 1000psia. Ternary mixed gas feeds containing toluene/CO 2/CH 4 and H 2S/CO 2/CH 4 show antiplasticization, but more importantly, selectivity losses due to plasticization did not occur up to 900psia of total feed pressure. These results show that the polyamide-imide family represents a promising class of separation materials for aggressive acid gas purifications. © 2012 Elsevier B.V.
    Citation
    Vaughn JT, Koros WJ, Johnson JR, Karvan O (2012) Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations. Journal of Membrane Science 401-402: 163–174. Available: http://dx.doi.org/10.1016/j.memsci.2012.01.047.
    Sponsors
    This publication is based on work supported by Award No. KUS-I1-011-21, made by King Abdullah University of Science and Technology (KAUST). The authors would also like to thank Dr. Maria Christina Rumi and Josh Thompson at Georgia Tech for their guidance in the fluorescence and XRD measurements, respectively.
    Publisher
    Elsevier BV
    Journal
    Journal of Membrane Science
    DOI
    10.1016/j.memsci.2012.01.047
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.memsci.2012.01.047
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.