• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Edge maps: Representing flow with bounded error

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Bhatia, Harsh
    Jadhav, Shreeraj
    Bremer, Peer-Timo
    Chen, Guoning
    Levine, Joshua A.
    Nonato, Luis Gustavo
    Pascucci, Valerio
    KAUST Grant Number
    KUS-CI-016-04
    Date
    2011-03
    Permanent link to this record
    http://hdl.handle.net/10754/598046
    
    Metadata
    Show full item record
    Abstract
    Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Many analysis techniques rely on computing streamlines, a task often hampered by numerical instabilities. Approaches that ignore the resulting errors can lead to inconsistencies that may produce unreliable visualizations and ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with linear maps defined on its boundary. This representation, called edge maps, is equivalent to computing all possible streamlines at a user defined error threshold. In spite of this error, all the streamlines computed using edge maps will be pairwise disjoint. Furthermore, our representation stores the error explicitly, and thus can be used to produce more informative visualizations. Given a piecewise-linear interpolated vector field, a recent result [15] shows that there are only 23 possible map classes for a triangle, permitting a concise description of flow behaviors. This work describes the details of computing edge maps, provides techniques to quantify and refine edge map error, and gives qualitative and visual comparisons to more traditional techniques. © 2011 IEEE.
    Citation
    Bhatia H, Jadhav S, Bremer P-T, Chen G, Levine JA, et al. (2011) Edge maps: Representing flow with bounded error. 2011 IEEE Pacific Visualization Symposium. Available: http://dx.doi.org/10.1109/pacificvis.2011.5742375.
    Sponsors
    This work is supported in part by the National Science Foundation awards IIS-I045032, OCI-0904631, OCI-0906379 and CCF-0702817, and by King Abdullah University of Science and Technology (KAUST) Award No. KUS-CI-016-04. This work was also performed under the auspices of the U.S. Department of Energy by the University of Utah under contracts DE-SCOOOI922, DE-AC52-07NA27344, and DE-FC02-06ER25781, and Lawrence Livermore National Laboratory (LLNL) under contract DE-AC52-07NA27344. We are grateful to Jackie Chen for the dataset from Figure 11, Robert S. Laramee for the diesel engine dataset from Figure 13, and Paul Miller, William Cabot, and Andrew Cook for the bubbles dataset from Figure 14. Attila Gyulassy and Philippe P. Pebay provided many useful comments and discussions. LLNL-PROC-463631.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2011 IEEE Pacific Visualization Symposium
    DOI
    10.1109/pacificvis.2011.5742375
    ae974a485f413a2113503eed53cd6c53
    10.1109/pacificvis.2011.5742375
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.