• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Dynamical Orientation of Large Molecules on Oxide Surfaces and its Implications for Dye-Sensitized Solar Cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Brennan, Thomas P.
    Tanskanen, Jukka T.
    Bakke, Jonathan R.
    Nguyen, William H.
    Nordlund, Dennis
    Toney, Michael F.
    McGehee, Michael D.
    Sellinger, Alan cc
    Bent, Stacey F.
    KAUST Grant Number
    KUS-C1-015-21
    Date
    2013-11-04
    Online Publication Date
    2013-11-04
    Print Publication Date
    2013-11-12
    Permanent link to this record
    http://hdl.handle.net/10754/598032
    
    Metadata
    Show full item record
    Abstract
    A dual experimental-computational approach utilizing near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and density functional theory-molecular dynamics (DFT-MD) is presented for determining the orientation of a large adsorbate on an oxide substrate. A system of interest in the field of dye-sensitized solar cells is studied: an organic cyanoacrylic acid-based donor-π-acceptor dye (WN1) bound to anatase TiO2. Assessment of nitrogen K-edge NEXAFS spectra is supported by calculations of the electronic structure that indicate energetically discrete transitions associated with the two π systems of the C-N triple bond in the cyanoacrylic acid portion of the dye. Angle-resolved NEXAFS spectra are fitted to determine the orientation of these two orbital systems, and the results indicate an upright orientation of the adsorbed dye, 63 from the TiO2 surface plane. These experimental results are then compared to computational studies of the WN1 dye on an anatase (101) TiO2 slab. The ground state structure obtained from standard DFT optimization is less upright (45 from the surface) than the NEXAFS results. However, DFT-MD simulations, which provide a more realistic depiction of the dye at room temperature, exhibit excellent agreement - within 2 on average - with the angles determined via NEXAFS, demonstrating the importance of accounting for the dynamic nature of adsorbate-substrate interactions and DFT-MD's powerful predictive abilities. © 2013 American Chemical Society.
    Citation
    Brennan TP, Tanskanen JT, Bakke JR, Nguyen WH, Nordlund D, et al. (2013) Dynamical Orientation of Large Molecules on Oxide Surfaces and its Implications for Dye-Sensitized Solar Cells. Chem Mater 25: 4354–4363. Available: http://dx.doi.org/10.1021/cm402609k.
    Sponsors
    This publication was based on work supported by the Center for Advanced Molecular Photovoltaics (CAMP) (Award No. KUS-C1-015-21), made by King Abdullah University of Science and Technology (KAUST). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University under SSRL proposal #3338. T.P.B. would like to thank the Albion Walter Hewlett Fellowship for financial support. J.T.T. gratefully acknowledges the Academy of Finland (Grant 256800/2012) and the Finnish Cultural Foundation for financial support. J.R.B acknowledges funding from the National Science Foundation (NSF) Graduate Fellowship. We would like to thank Dr. Han Bo-Ram Lee for assistance with the ALD of TiO2.
    Publisher
    American Chemical Society (ACS)
    Journal
    Chemistry of Materials
    DOI
    10.1021/cm402609k
    ae974a485f413a2113503eed53cd6c53
    10.1021/cm402609k
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.