• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Khajuria, Harish
    Pistikopoulos, Efstratios N.
    Date
    2011-01
    Permanent link to this record
    http://hdl.handle.net/10754/598026
    
    Metadata
    Show full item record
    Abstract
    Pressure swing adsorption (PSA) is a flexible, albeit complex gas separation system. Due to its inherent nonlinear nature and discontinuous operation, the design of a model based PSA controller, especially with varying operating conditions, is a challenging task. This work focuses on the design of an explicit/multi-parametric model predictive controller for a PSA system. Based on a system involving four adsorbent beds separating 70% H2, 30% CH4 mixture into high purity hydrogen, the key controller objective is to fast track H2 purity to a set point value of 99.99%. To perform this task, a rigorous and systematic framework is employed. First, a high fidelity detailed dynamic model is built to represent the system's real operation, and understand its dynamic behavior. The model is then used to derive appropriate linear models by applying suitable system identification techniques. For the reduced models, a model predictive control (MPC) step is formulated, where latest developments in multi-parametric programming and control are applied to derive a novel explicit MPC controller. To test the performance of the designed controller, closed loop simulations are performed where the dynamic model is used as the virtual plant. Comparison studies of the derived explicit MPC controller are also performed with conventional PID controllers. © 2010 Elsevier Ltd. All rights reserved.
    Citation
    Khajuria H, Pistikopoulos EN (2011) Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems. Journal of Process Control 21: 151–163. Available: http://dx.doi.org/10.1016/j.jprocont.2010.10.021.
    Sponsors
    Financial support from the Royal Commission for the Exhibition of 1851, ParOS Ltd., EU project HY2SEPS (contract number: 019887), and KAUST is sincerely acknowledged. The authors would also like to thank HY2SEPS for kindly providing the experimental data for the gas solid system.
    Publisher
    Elsevier BV
    Journal
    Journal of Process Control
    DOI
    10.1016/j.jprocont.2010.10.021
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jprocont.2010.10.021
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.