Double-lock ratchet mechanism revealing the role of SER-344 in FoF1 ATP synthase
Type
ArticleKAUST Grant Number
KUK-11-008-23Date
2011-03-07Online Publication Date
2011-03-07Print Publication Date
2011-03-22Permanent link to this record
http://hdl.handle.net/10754/598016
Metadata
Show full item recordAbstract
In a majority of living organisms, FoF1 ATP synthase performs the fundamental process of ATP synthesis. Despite the simple net reaction formula, ADP+Pi→ATP+H2O, the detailed step-by-step mechanism of the reaction yet remains to be resolved owing to the complexity of this multisubunit enzyme. Based on quantum mechanical computations using recent high resolution X-ray structures, we propose that during ATP synthesis the enzyme first prepares the inorganic phosphate for the γP-OADP bond-forming step via a double-proton transfer. At this step, the highly conserved αS344 side chain plays a catalytic role. The reaction thereafter progresses through another transition state (TS) having a planar ion configuration to finally form ATP. These two TSs are concluded crucial for ATP synthesis. Using stepwise scans and several models of the nucleotide-bound active site, some of the most important conformational changes were traced toward direction of synthesis. Interestingly, as the active site geometry progresses toward the ATP-favoring tight binding site, at both of these TSs, a dramatic increase in barrier heights is observed for the reverse direction, i.e., hydrolysis of ATP. This change could indicate a "ratchet" mechanism for the enzyme to ensure efficacy of ATP synthesis by shifting residue conformation and thus locking access to the crucial TSs.Citation
Beke-Somfai T, Lincoln P, Norden B (2011) Double-lock ratchet mechanism revealing the role of SER-344 in FoF1 ATP synthase. Proceedings of the National Academy of Sciences 108: 4828–4833. Available: http://dx.doi.org/10.1073/pnas.1010453108.Sponsors
This work is funded by King Abdullah University of Science and Technology (Grant KUK-11-008-23). The Eötvös University computer facility, the High Performance Computing Group (University of Szeged), and the Swedish National Infrastructure for Computing resources were used for calculations.PubMed ID
21383131PubMed Central ID
PMC3064393ae974a485f413a2113503eed53cd6c53
10.1073/pnas.1010453108
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F(O)F(1)-ATP Synthase.
- Authors: Lapashina AS, Shugaeva TE, Berezina KM, Kholina TD, Feniouk BA
- Issue date: 2019 Apr
- The regulatory subunit ε in Escherichia coli F(O)F(1)-ATP synthase.
- Authors: Sielaff H, Duncan TM, Börsch M
- Issue date: 2018 Sep
- The Escherichia coli FOF1 gammaM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway.
- Authors: Al-Shawi MK, Ketchum CJ, Nakamoto RK
- Issue date: 1997 Oct 21
- Subunit movement in individual H+-ATP synthases during ATP synthesis and hydrolysis revealed by fluorescence resonance energy transfer.
- Authors: Börsch M, Gräber P
- Issue date: 2005 Aug
- Movements of the epsilon-subunit during catalysis and activation in single membrane-bound H(+)-ATP synthase.
- Authors: Zimmermann B, Diez M, Zarrabi N, Gräber P, Börsch M
- Issue date: 2005 Jun 15