Show simple item record

dc.contributor.authorKanschat, Guido
dc.contributor.authorSharma, Natasha
dc.date.accessioned2016-02-25T13:10:43Z
dc.date.available2016-02-25T13:10:43Z
dc.date.issued2014-01
dc.identifier.citationKanschat G, Sharma N (2014) Divergence-Conforming Discontinuous Galerkin Methods and $C^0$ Interior Penalty Methods. SIAM J Numer Anal 52: 1822–1842. Available: http://dx.doi.org/10.1137/120902975.
dc.identifier.issn0036-1429
dc.identifier.issn1095-7170
dc.identifier.doi10.1137/120902975
dc.identifier.urihttp://hdl.handle.net/10754/598001
dc.description.abstract© 2014 Society for Industrial and Applied Mathematics. In this paper, we show that recently developed divergence-conforming methods for the Stokes problem have discrete stream functions. These stream functions in turn solve a continuous interior penalty problem for biharmonic equations. The equivalence is established for the most common methods in two dimensions based on interior penalty terms. Then, extensions of the concept to discontinuous Galerkin methods defined through lifting operators, for different weak formulations of the Stokes problem, and to three dimensions are discussed. Application of the equivalence result yields an optimal error estimate for the Stokes velocity without involving the pressure. Conversely, combined with a recent multigrid method for Stokes flow, we obtain a simple and uniform preconditioner for harmonic problems with simply supported and clamped boundary.
dc.description.sponsorshipThe first author was supported in part by the National Science Foundation through grant DMS-0810387 and by the King Abdullah University of Science and Technology (KAUST) through award KUS-C1-016-04. Part of this research was conceived and prepared when the author visited the Institute for Mathematics and Its Applications in Minneapolis.
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)
dc.subjectBiharmonic
dc.subjectDivergence-free solutions
dc.subjectError estimates
dc.subjectFinite element cochain complex
dc.subjectInterior penalty methods
dc.subjectPreconditioning
dc.subjectStokes equations
dc.titleDivergence-Conforming Discontinuous Galerkin Methods and $C^0$ Interior Penalty Methods
dc.typeArticle
dc.identifier.journalSIAM Journal on Numerical Analysis
dc.contributor.institutionUniversitat Heidelberg, Heidelberg, Germany
kaust.grant.numberKUS-C1-016-04


This item appears in the following Collection(s)

Show simple item record