• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Discontinuous Petrov–Galerkin method with optimal test functions for thin-body problems in solid mechanics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Niemi, Antti H.
    Bramwell, Jamie A.
    Demkowicz, Leszek F.
    Date
    2011-02
    Permanent link to this record
    http://hdl.handle.net/10754/597992
    
    Metadata
    Show full item record
    Abstract
    We study the applicability of the discontinuous Petrov-Galerkin (DPG) variational framework for thin-body problems in structural mechanics. Our numerical approach is based on discontinuous piecewise polynomial finite element spaces for the trial functions and approximate, local computation of the corresponding 'optimal' test functions. In the Timoshenko beam problem, the proposed method is shown to provide the best approximation in an energy-type norm which is equivalent to the L2-norm for all the unknowns, uniformly with respect to the thickness parameter. The same formulation remains valid also for the asymptotic Euler-Bernoulli solution. As another one-dimensional model problem we consider the modelling of the so called basic edge effect in shell deformations. In particular, we derive a special norm for the test space which leads to a robust method in terms of the shell thickness. Finally, we demonstrate how a posteriori error estimator arising directly from the discontinuous variational framework can be utilized to generate an optimal hp-mesh for resolving the boundary layer. © 2010 Elsevier B.V.
    Citation
    Niemi AH, Bramwell JA, Demkowicz LF (2011) Discontinuous Petrov–Galerkin method with optimal test functions for thin-body problems in solid mechanics. Computer Methods in Applied Mechanics and Engineering 200: 1291–1300. Available: http://dx.doi.org/10.1016/j.cma.2010.10.018.
    Sponsors
    This work was made possible with funding from King Abdullah University of Science and Technology (KAUST). We are grateful for this financial support.
    Publisher
    Elsevier BV
    Journal
    Computer Methods in Applied Mechanics and Engineering
    DOI
    10.1016/j.cma.2010.10.018
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.cma.2010.10.018
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.