Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations
Type
ArticleKAUST Grant Number
KUK-I1-007-43Date
2011-01-17Permanent link to this record
http://hdl.handle.net/10754/597985
Metadata
Show full item recordAbstract
Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.Citation
Lorz A, Mirrahimi S, Perthame B (2011) Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations. Communications in Partial Differential Equations 36: 1071–1098. Available: http://dx.doi.org/10.1080/03605302.2010.538784.Sponsors
This research is supported by Award No. KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST).Publisher
Informa UK Limitedae974a485f413a2113503eed53cd6c53
10.1080/03605302.2010.538784