Type
ArticleKAUST Grant Number
KUK-C1-014-12Date
2010-08Permanent link to this record
http://hdl.handle.net/10754/597962
Metadata
Show full item recordAbstract
The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring. © 2009 Elsevier Ltd. All rights reserved.Citation
Huang BJ, Wu MS, Hsu PC, Chen JW, Chen KY (2010) Development of high-performance solar LED lighting system. Energy Conversion and Management 51: 1669–1675. Available: http://dx.doi.org/10.1016/j.enconman.2009.11.046.Sponsors
This publication is based on the work supported in part by Award No. KUK-C1-014-12, made by King Abdullah University of Science and Technology (KAUST) and the Project No. 97-D0137-1 made by Energy Bureau, Ministry of Economic Affairs, Taiwan.Publisher
Elsevier BVJournal
Energy Conversion and Managementae974a485f413a2113503eed53cd6c53
10.1016/j.enconman.2009.11.046
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated items
Showing items related by title, author, creator and subject.
-
Solar energy optimization in solar-HVAC using Sutterby hybrid nanofluid with Smoluchowski temperature conditions: a solar thermal applicationJamshed, Wasim; Eid, Mohamed R; Safdar, Rabia; Pasha, Amjad Ali; Mohamed Isa, Siti Suzilliana Putri; ADIL, MOHAMMAD; Rehman, Zulfiqar; Weera, Wajaree (Scientific reports, Springer Science and Business Media LLC, 2022-07-07) [Article]In solar heating, ventilation, and air conditioning (HVAC), communications are designed to create new 3D mathematical models that address the flow of rotating Sutterby hybrid nanofluids exposed to slippery and expandable seats. The heat transmission investigation included effects such as copper and graphene oxide nanoparticles, as well as thermal radiative fluxing. The activation energy effect was used to investigate mass transfer with fluid concentration. The boundary constraints utilized were Maxwell speed and Smoluchowksi temperature slippage. With the utilization of fitting changes, partial differential equations (PDEs) for impetus, energy, and concentricity can be decreased to ordinary differential equations (ODEs). To address dimensionless ODEs, MATLAB's Keller box numerical technique was employed. Graphene oxide Copper/engine oil (GO-Cu/EO) is taken into consideration to address the performance analysis of the current study. Physical attributes, for example, surface drag coefficient, heat move, and mass exchange are mathematically processed and shown as tables and figures when numerous diverse factors are varied. The temperature field is enhanced by an increase in the volume fraction of copper and graphene oxide nanoparticles, while the mass fraction field is enhanced by an increase in activation energy.
-
Solar Cells: Solvent Additive Effects on Small Molecule Crystallization in Bulk Heterojunction Solar Cells Probed During Spin Casting (Adv. Mater. 44/2013)Perez, Louis A.; Chou, Kang Wei; Love, John A.; van der Poll, Thomas S.; Smilgies, Detlef-M.; Nguyen, Thuc-Quyen; Kramer, Edward J.; Amassian, Aram; Bazan, Guillermo C. (Advanced Materials, Wiley-Blackwell, 2013-11) [Article]
-
The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cellsDupont, Stephanie R.; Voroshazi, Eszter; Heremans, Paul; Dauskardt, Reinhold H. (2012 38th IEEE Photovoltaic Specialists Conference, Institute of Electrical and Electronics Engineers (IEEE), 2012-06) [Conference Paper]We use a thin-film adhesion technique that enables us to precisely measure the energy required to separate adjacent layers in OPV cells. We demonstrate the presence of weak interfaces in prototypical inverted polymer solar cells, either prepared by spin, spray or slot-die coating, including flexible and non flexible solar cells. In all cases, we observed adhesive failure at P3HT:PCBM/PEDOT:PSS interface, indicating the intrinsic material dependence of this mechanism. The impact of temperature, solar irradiation and humidity on the adhesion and cohesion properties of this particular interface is discussed. First, we have found that post-deposition annealing increases the adhesion significantly. Annealing changes the morphology in the photoactive layer and consequently alters the chemical properties at the interface. Second, solar irradiation on fully encapsulated solar cells has no damaging but in contrast an enhancing effect on the adhesion properties, due to the heat generated from IR radiation. Finally, the synergetic effect of stress and an environmental species like moisture greatly accelerates the decohesion rate in the weak hygroscopic PEDOT:PSS layer. This results in a loss of mechanical integrity and device performance. The insight into the mechanisms of delamination and decohesion yields general guidelines for the design of more reliable organic electronic devices. © 2012 IEEE.