• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Collis, Gavin E.
    Date
    2015-12-22
    Permanent link to this record
    http://hdl.handle.net/10754/597951
    
    Metadata
    Show full item record
    Abstract
    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.
    Citation
    Collis GE (2015) Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics. Micro+Nano Materials, Devices, and Systems. Available: http://dx.doi.org/10.1117/12.2202565.
    Sponsors
    Research was undertaken through CSIRO’s Flexible Electronics Theme. ABH, GEC, YS, SM, and AB acknowledgeCSIRO OCE for financial support. The author acknowledges all the work and effort of the co-authors on thesepublications from CSIRO, the Australian Synchrotron, and Australian (University of Melbourne, Monash University,University of Newcastle and University of Warwick) and international collaborators (Wake Forest University, USA;Georgia Institute of Technology, USA; and King Abdullah University of Science and Technology, KSA).
    Publisher
    SPIE-Intl Soc Optical Eng
    Journal
    Micro+Nano Materials, Devices, and Systems
    DOI
    10.1117/12.2202565
    ae974a485f413a2113503eed53cd6c53
    10.1117/12.2202565
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.