Deconvolution When Classifying Noisy Data Involving Transformations
Type
ArticleDate
2012-10-08Online Publication Date
2012-10-08Print Publication Date
2012-09Permanent link to this record
http://hdl.handle.net/10754/597922
Metadata
Show full item recordAbstract
In the present study, we consider the problem of classifying spatial data distorted by a linear transformation or convolution and contaminated by additive random noise. In this setting, we show that classifier performance can be improved if we carefully invert the data before the classifier is applied. However, the inverse transformation is not constructed so as to recover the original signal, and in fact, we show that taking the latter approach is generally inadvisable. We introduce a fully data-driven procedure based on cross-validation, and use several classifiers to illustrate numerical properties of our approach. Theoretical arguments are given in support of our claims. Our procedure is applied to data generated by light detection and ranging (Lidar) technology, where we improve on earlier approaches to classifying aerosols. This article has supplementary materials online.Citation
Carroll R, Delaigle A, Hall P (2012) Deconvolution When Classifying Noisy Data Involving Transformations. Journal of the American Statistical Association 107: 1166–1177. Available: http://dx.doi.org/10.1080/01621459.2012.699793.Sponsors
Raymond Carroll is Head, Department of Statistics, Texas A&M University, College Station, TX 77843-3143 (E-mail: carroll@stat.tamu.edu). Aurore Delaigle is Associate Professor (E-mail: a.delaigle@ms.unimelb.edu.au) and Peter Hall is Professor (E-mail: halpstat@ms.unimelb.edu.au), Department of Mathematics and Statistics, University of Melbourne, VIC 3010, Australia. Carroll's research was supported by a grant from the National Cancer Institute (R37-CA057030) and in part by award number KUS-CI-016-04, made by King Abdullah University of Science and Technology (KAUST) and by the National Science Foundation (DMS-0914951). Delaigle's research was supported by grants and a Queen Elizabeth II Fellowship from the Australian Research Council, and Hall's research was supported by a Federation Fellowship, a Laureate Fellowship, and grants from the Australian Research Council.Publisher
Informa UK LimitedPubMed ID
23606778PubMed Central ID
PMC3630802ae974a485f413a2113503eed53cd6c53
10.1080/01621459.2012.699793
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Joint deconvolution and classification with applications to passive acoustic underwater multipath.
- Authors: Anderson HS, Gupta MR
- Issue date: 2008 Nov
- Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations.
- Authors: Marais WJ, Holz RE, Hu YH, Kuehn RE, Eloranta EE, Willett RM
- Issue date: 2016 Oct 10
- Prediction of breast cancer metastasis by gene expression profiles: a comparison of metagenes and single genes.
- Authors: Burton M, Thomassen M, Tan Q, Kruse TA
- Issue date: 2012
- Nonlinear dynamic range compression deconvolution.
- Authors: Haji-saeed B, Sengupta SK, Goodhue W, Khoury J, Woods CL, Kierstead J
- Issue date: 2006 Jul 1
- Multidimensional multichannel FIR deconvolution using Gröbner bases.
- Authors: Zhou J, Do MN
- Issue date: 2006 Oct