Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes
Type
ArticleAuthors
Li, YiyangEl Gabaly, Farid
Ferguson, Todd R.
Smith, Raymond B.
Bartelt, Norman C.
Sugar, Joshua D.
Fenton, Kyle R.
Cogswell, Daniel A.
Kilcoyne, A. L. David
Tyliszczak, Tolek
Bazant, Martin Z.
Chueh, William C.
Date
2014-09-14Online Publication Date
2014-09-14Print Publication Date
2014-12Permanent link to this record
http://hdl.handle.net/10754/597915
Metadata
Show full item recordAbstract
©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.Citation
Li Y, El Gabaly F, Ferguson TR, Smith RB, Bartelt NC, et al. (2014) Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat Mater 13: 1149–1156. Available: http://dx.doi.org/10.1038/nmat4084.Sponsors
The research at Stanford was supported by the Samsung Advanced Institute of Technology Global Research Outreach Program, and by startup funding from Stanford School of Engineering and Precourt Institute for Energy. Support for the research at MIT was provided by the Samsung-MIT Program for Materials Design in Energy Applications. F.E.G. and N.C.B. were supported by the Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, US Department of Energy, under contract DE-AC04-94AL85000. J.D.S. and K.R.F. were supported by US Department of Energy through the Sandia Laboratory Directed Research and Development program under contract DE-AC04-94AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Beam line 5.3.2.1 at the Advanced Light Source was funded through a donation by the King Abdullah University of Science and Technology. Y.L. was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747. We acknowledge M. Homer of Sandia and J. Perrino of Stanford for ultramicrotoming. We thank J. Nelson Weker of the Stanford Synchrotron Radiation Lightsource for insightful discussions.Publisher
Springer NatureJournal
Nature MaterialsDOI
10.1038/nmat4084PubMed ID
25218062ae974a485f413a2113503eed53cd6c53
10.1038/nmat4084
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping.
- Authors: Chueh WC, El Gabaly F, Sugar JD, Bartelt NC, McDaniel AH, Fenton KR, Zavadil KR, Tyliszczak T, Lai W, McCarty KF
- Issue date: 2013 Mar 13
- Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
- Authors: Bazant MZ
- Issue date: 2013 May 21
- Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling.
- Authors: Zhang X, van Hulzen M, Singh DP, Brownrigg A, Wright JP, van Dijk NH, Wagemaker M
- Issue date: 2015 Sep 23
- In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge.
- Authors: Demirocak DE, Bhushan B
- Issue date: 2014 Jun 1
- In Situ Multilength-Scale Tracking of Dimensional and Viscoelastic Changes in Composite Battery Electrodes.
- Authors: Dargel V, Jäckel N, Shpigel N, Sigalov S, Levi MD, Daikhin L, Presser V, Aurbach D
- Issue date: 2017 Aug 23