• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Li, Yiyang
    El Gabaly, Farid
    Ferguson, Todd R.
    Smith, Raymond B.
    Bartelt, Norman C.
    Sugar, Joshua D.
    Fenton, Kyle R.
    Cogswell, Daniel A.
    Kilcoyne, A. L. David
    Tyliszczak, Tolek
    Bazant, Martin Z.
    Chueh, William C.
    Date
    2014-09-14
    Online Publication Date
    2014-09-14
    Print Publication Date
    2014-12
    Permanent link to this record
    http://hdl.handle.net/10754/597915
    
    Metadata
    Show full item record
    Abstract
    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.
    Citation
    Li Y, El Gabaly F, Ferguson TR, Smith RB, Bartelt NC, et al. (2014) Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat Mater 13: 1149–1156. Available: http://dx.doi.org/10.1038/nmat4084.
    Sponsors
    The research at Stanford was supported by the Samsung Advanced Institute of Technology Global Research Outreach Program, and by startup funding from Stanford School of Engineering and Precourt Institute for Energy. Support for the research at MIT was provided by the Samsung-MIT Program for Materials Design in Energy Applications. F.E.G. and N.C.B. were supported by the Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, US Department of Energy, under contract DE-AC04-94AL85000. J.D.S. and K.R.F. were supported by US Department of Energy through the Sandia Laboratory Directed Research and Development program under contract DE-AC04-94AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Beam line 5.3.2.1 at the Advanced Light Source was funded through a donation by the King Abdullah University of Science and Technology. Y.L. was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747. We acknowledge M. Homer of Sandia and J. Perrino of Stanford for ultramicrotoming. We thank J. Nelson Weker of the Stanford Synchrotron Radiation Lightsource for insightful discussions.
    Publisher
    Springer Nature
    Journal
    Nature Materials
    DOI
    10.1038/nmat4084
    PubMed ID
    25218062
    ae974a485f413a2113503eed53cd6c53
    10.1038/nmat4084
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

    Related articles

    • Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping.
    • Authors: Chueh WC, El Gabaly F, Sugar JD, Bartelt NC, McDaniel AH, Fenton KR, Zavadil KR, Tyliszczak T, Lai W, McCarty KF
    • Issue date: 2013 Mar 13
    • Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    • Authors: Bazant MZ
    • Issue date: 2013 May 21
    • Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling.
    • Authors: Zhang X, van Hulzen M, Singh DP, Brownrigg A, Wright JP, van Dijk NH, Wagemaker M
    • Issue date: 2015 Sep 23
    • In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge.
    • Authors: Demirocak DE, Bhushan B
    • Issue date: 2014 Jun 1
    • In Situ Multilength-Scale Tracking of Dimensional and Viscoelastic Changes in Composite Battery Electrodes.
    • Authors: Dargel V, Jäckel N, Shpigel N, Sigalov S, Levi MD, Daikhin L, Presser V, Aurbach D
    • Issue date: 2017 Aug 23
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.