• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    CARRILLO, JOSÉ ANTONIO
    HITTMEIR, SABINE
    Jüngel, Ansgar
    Date
    2012-12
    Permanent link to this record
    http://hdl.handle.net/10754/597896
    
    Metadata
    Show full item record
    Abstract
    A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical concentration. For arbitrarily small cross-diffusion coefficients and for suitable exponents of the nonlinear diffusion terms, the global-in-time existence of weak solutions is proved, thus preventing finite-time blow up of the cell density. The global existence result also holds for linear and fast diffusion of the cell density in a certain parameter range in three dimensions. Furthermore, we show L∞ bounds for the solutions to the parabolic-elliptic system. Sufficient conditions leading to the asymptotic stability of the constant steady state are given for a particular choice of the nonlinear diffusion exponents. Numerical experiments in two and three space dimensions illustrate the theoretical results. © 2012 World Scientific Publishing Company.
    Citation
    CARRILLO JA, HITTMEIR S, JÜNGEL A (2012) CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL. Mathematical Models and Methods in Applied Sciences 22: 1250041. Available: http://dx.doi.org/10.1142/S0218202512500418.
    Sponsors
    J.A.C. was partially supported by the project MTM2011-27739-C04/-02 DGI (Spain) and 2009-SGR-345 from AGAUR-Generalitat de Catalunya. The work of S. H. was supported by Award No. KUK-I1-007-43, funded by King Abdullah University of Science and Technology (KAUST). S. H. and A.J. acknowledge partial support from the Austrian Science Fund (FWF), grants P20214, P22108, and I395; the Austrian-Croatian Project HR 01/2010 and the Austrian-French Project FR 07/2010 of the Austrian Exchange Service (OAD). All authors acknowledge support from the Austrian-Spanish Project ES 08/2010 of the OAD.
    Publisher
    World Scientific Pub Co Pte Lt
    Journal
    Mathematical Models and Methods in Applied Sciences
    DOI
    10.1142/S0218202512500418
    ae974a485f413a2113503eed53cd6c53
    10.1142/S0218202512500418
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.