• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Sang, Huiyan
    Jun, Mikyoung
    Huang, Jianhua Z.
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2011-12
    Permanent link to this record
    http://hdl.handle.net/10754/597892
    
    Metadata
    Show full item record
    Abstract
    This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models. Our method allows for a nonseparable and nonstationary cross-covariance structure. We also present a covariance approximation approach to facilitate the computation in the modeling and analysis of very large multivariate spatial data sets. The covariance approximation consists of two parts: a reduced-rank part to capture the large-scale spatial dependence, and a sparse covariance matrix to correct the small-scale dependence error induced by the reduced rank approximation. We pay special attention to the case that the second part of the approximation has a block-diagonal structure. Simulation results of model fitting and prediction show substantial improvement of the proposed approximation over the predictive process approximation and the independent blocks analysis. We then apply our computational approach to the joint statistical modeling of multiple climate model errors. © 2012 Institute of Mathematical Statistics.
    Citation
    Sang H, Jun M, Huang JZ (2011) Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors. The Annals of Applied Statistics 5: 2519–2548. Available: http://dx.doi.org/10.1214/11-AOAS478.
    Sponsors
    This publication is based in part on work supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).Supported in part by NSF Grant DMS-10-07618.Supported in part by NSF Grant DMS-09-06532.Supported in part by NSF Grant DMS-09-07170 and the NCI Grant CA57030.
    Publisher
    Institute of Mathematical Statistics
    Journal
    The Annals of Applied Statistics
    DOI
    10.1214/11-AOAS478
    ae974a485f413a2113503eed53cd6c53
    10.1214/11-AOAS478
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.