• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    COUPLED CHEMOTAXIS FLUID MODEL

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    LORZ, ALEXANDER
    KAUST Grant Number
    KUK-I1-007-43
    Date
    2012-04-26
    Online Publication Date
    2012-04-26
    Print Publication Date
    2010-06
    Permanent link to this record
    http://hdl.handle.net/10754/597889
    
    Metadata
    Show full item record
    Abstract
    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.
    Citation
    LORZ A (2010) COUPLED CHEMOTAXIS FLUID MODEL. Mathematical Models and Methods in Applied Sciences 20: 987–1004. Available: http://dx.doi.org/10.1142/S0218202510004507.
    Sponsors
    This is based on work supported by Award No. KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST). A. L. would like to thank Peter Markowich, Adrien Blanchet and Klemens Fellner for useful discussions, Prof. Ray Goldstein and the Goldstein Lab. at DAMTP for ongoing and invaluable discussions as well as for permission to use the pictures. Moreover, A. L. would like to kindly thank the referee for his highly useful comments in order to improve this paper.
    Publisher
    World Scientific Pub Co Pte Lt
    Journal
    Mathematical Models and Methods in Applied Sciences
    DOI
    10.1142/S0218202510004507
    ae974a485f413a2113503eed53cd6c53
    10.1142/S0218202510004507
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.