• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Correspondence Between “Stable” Flame Macrostructure and Thermo-acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Taamallah, Soufien
    LaBry, Zachary A.
    Shanbhogue, Santosh J.
    Habib, Mohamed A. M.
    Ghoniem, Ahmed F.
    KAUST Grant Number
    R12-CE-10
    KUS-110-010-01
    Date
    2014-12-23
    Online Publication Date
    2014-12-23
    Print Publication Date
    2015-07-01
    Permanent link to this record
    http://hdl.handle.net/10754/597888
    
    Metadata
    Show full item record
    Abstract
    Copyright © 2015 by ASME. In this paper, we conduct an experimental investigation to study the link between the flame macroscale structure - or flame brush spatial distribution - and thermo-acoustic instabilities, in a premixed swirl-stabilized dump combustor. We operate the combustor with premixed methane-air in the range of equivalence ratio (Φ) from the lean blowout limit to Φ = 0. 75. First, we observe the different dynamic modes in this lean range as Φ is raised. We also document the effect of Φ on the flame macrostructure. Next, we examine the correspondence between dynamic mode transitions and changes in flame macrostructure. To do so, we modify the combustor length - by downstream truncation - without changing the underlying flow upstream. Thus, the resonant frequencies of the geometry are altered allowing for decoupling the heat release rate fluctuations and the acoustic feedback. Mean flame configurations in the modified combustor and for the same range of equivalence ratio are examined, following the same experimental protocol. It is found that not only the same sequence of flame macrostructures is observed in both combustors but also that the transitions occur at a similar set of equivalence ratio. In particular, the appearance of the flame in the outside recirculation zone (ORZ) in the long combustor - which occurs simultaneously with the onset of instability at the fundamental frequency - happens at similar Φ when compared to the short combustor, but without being in latter case accompanied by a transition to thermo-acoustic instability. Then, we interrogate the flow field by analyzing the streamlines, mean, and rms velocities for the nonreacting flow and the different flame types. Finally, we focus on the transition of the flame to the ORZ in the acoustically decoupled case. Our analysis of this transition shows that it occurs gradually with an intermittent appearance of a flame in the ORZ and an increasing probability with Φ. The spectral analysis of this phenomenon - we refer to as "ORZ flame flickering" - shows the presence of unsteady events occurring at two distinct low frequency ranges. A broad band at very low frequency in the range ∼(1 Hz-10 Hz) associated with the expansion and contraction of the inner recirculation zone (IRZ) and a narrow band centered around 28 Hz which is the frequency of rotation of the flame as it is advected by the ORZ flow.
    Citation
    Taamallah S, LaBry ZA, Shanbhogue SJ, Habib MAM, Ghoniem AF (2014) Correspondence Between “Stable” Flame Macrostructure and Thermo-acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion. Journal of Engineering for Gas Turbines and Power 137: 071505. Available: http://dx.doi.org/10.1115/1.4029173.
    Sponsors
    This work was supported by the King Fahd University of Petroleum and Minerals (KFUPM) and King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, under the Grant Nos. R12-CE-10 and KUS-110-010-01, respectively.
    Publisher
    ASME International
    Journal
    Journal of Engineering for Gas Turbines and Power
    DOI
    10.1115/1.4029173
    ae974a485f413a2113503eed53cd6c53
    10.1115/1.4029173
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.