• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Correspondence Between One- and Two-Equation Models for Solute Transport in Two-Region Heterogeneous Porous Media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Davit, Y.
    Wood, B. D.
    Debenest, G.
    Quintard, M.
    KAUST Grant Number
    KUK-C1-013-04
    Date
    2012-07-26
    Online Publication Date
    2012-07-26
    Print Publication Date
    2012-10
    Permanent link to this record
    http://hdl.handle.net/10754/597886
    
    Metadata
    Show full item record
    Abstract
    In this work, we study the transient behavior of homogenized models for solute transport in two-region porous media. We focus on the following three models: (1) a time non-local, two-equation model (2eq-nlt). This model does not rely on time constraints and, therefore, is particularly useful in the short-time regime, when the timescale of interest (t) is smaller than the characteristic time (τ 1) for the relaxation of the effective macroscale parameters (i. e., when t ≤ τ 1); (2) a time local, two-equation model (2eq). This model can be adopted when (t) is significantly larger than (τ 1) (i.e., when t≫τ 1); and (3) a one-equation, time-asymptotic formulation (1eq ∞). This model can be adopted when (t) is significantly larger than the timescale (τ 2) associated with exchange processes between the two regions (i. e., when t≫τ 2). In order to obtain insight into this transient behavior, we combine a theoretical approach based on the analysis of spatial moments with numerical and analytical results in several simple cases. The main result of this paper is to show that there is only a weak asymptotic convergence of the solution of (2eq) towards the solution of (1eq ∞) in terms of standardized moments but, interestingly, not in terms of centered moments. The physical interpretation of this result is that deviations from the Fickian situation persist in the limit of long times but that the spreading of the solute is eventually dominating these higher order effects. © 2012 Springer Science+Business Media B.V.
    Citation
    Davit Y, Wood BD, Debenest G, Quintard M (2012) Correspondence Between One- and Two-Equation Models for Solute Transport in Two-Region Heterogeneous Porous Media. Transport in Porous Media 95: 213–238. Available: http://dx.doi.org/10.1007/s11242-012-0040-y.
    Sponsors
    Support from CNRS/GdR 2990 is gratefully acknowledged. The second author (BDW) was supported in part by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64417. This publication was based on work supported in part by Award No KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).
    Publisher
    Springer Nature
    Journal
    Transport in Porous Media
    DOI
    10.1007/s11242-012-0040-y
    ae974a485f413a2113503eed53cd6c53
    10.1007/s11242-012-0040-y
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.