Type
ArticleKAUST Grant Number
KUS-CI-016-04Date
2013-04-09Online Publication Date
2013-04-09Print Publication Date
2013-09-01Permanent link to this record
http://hdl.handle.net/10754/597869
Metadata
Show full item recordAbstract
The Lasso shrinkage procedure achieved its popularity, in part, by its tendency to shrink estimated coefficients to zero, and its ability to serve as a variable selection procedure. Using data-adaptive weights, the adaptive Lasso modified the original procedure to increase the penalty terms for those variables estimated to be less important by ordinary least squares. Although this modified procedure attained the oracle properties, the resulting models tend to include a large number of "false positives" in practice. Here, we adapt the concept of local false discovery rates (lFDRs) so that it applies to the sequence, λn, of smoothing parameters for the adaptive Lasso. We define the lFDR for a given λn to be the probability that the variable added to the model by decreasing λn to λn-δ is not associated with the outcome, where δ is a small value. We derive the relationship between the lFDR and λn, show lFDR =1 for traditional smoothing parameters, and show how to select λn so as to achieve a desired lFDR. We compare the smoothing parameters chosen to achieve a specified lFDR and those chosen to achieve the oracle properties, as well as their resulting estimates for model coefficients, with both simulation and an example from a genetic study of prostate specific antigen.Citation
Sampson JN, Chatterjee N, Carroll RJ, Muller S (2013) Controlling the local false discovery rate in the adaptive Lasso. Biostatistics 14: 653–666. Available: http://dx.doi.org/10.1093/biostatistics/kxt008.Sponsors
Sampson's and Chatterjee's research was supported by the Intramural Research Program of the NCI. Chatterjee's research was supported by a gene-environment initiative grant from the NHLBI (RO1-HL091172-01). Muller's research was supported by a grant from the Australian Research Council (DP110101998). Carroll's research was supported by a grant from the National Cancer Institute (R37-CA057030). Carroll was also supported by Award Number KUS-CI-016-04, made by King Abdullah University of Science and Technology (KAUST).Publisher
Oxford University Press (OUP)Journal
BiostatisticsPubMed ID
23575212PubMed Central ID
PMC3769997ae974a485f413a2113503eed53cd6c53
10.1093/biostatistics/kxt008
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- A constrained polynomial regression procedure for estimating the local False Discovery Rate.
- Authors: Dalmasso C, Bar-Hen A, Broët P
- Issue date: 2007 Jun 29
- Stability selection for mixed effect models with large numbers of predictor variables: A simulation study.
- Authors: Hyde R, O'Grady L, Green M
- Issue date: 2022 Sep
- Controlling the false discoveries in LASSO.
- Authors: Huang H
- Issue date: 2017 Dec
- On the robustness of the adaptive lasso to model misspecification.
- Authors: Lu W, Goldberg Y, Fine JP
- Issue date: 2012 Sep
- Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models.
- Authors: Belhechmi S, Bin R, Rotolo F, Michiels S
- Issue date: 2020 Jul 2