• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Pirmoradi, Fatemeh Nazly
    Ou, Kevin
    Jackson, John K.
    Letchford, Kevin
    Cui, Jing
    Wolf, Ki Tae
    Graber, Florian
    Zhao, Tom
    Matsubara, Joanne A.
    Burt, Helen
    Chiao, Mu
    Lin, Liwei
    Date
    2013-01
    Permanent link to this record
    http://hdl.handle.net/10754/597860
    
    Metadata
    Show full item record
    Abstract
    We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved packaging cover conforms to the eyeball thereby preventing the eye tissue from contacting the actuating membrane. By pulsed operation of the device, using an externally applied magnetic field, the drug released from the device accumulates in a cavity adjacent to the tissue. As such, docetaxel (DTX), an antiangiogenic drug, diffuses through the eye tissue, from sclera and choroid to retina. DTX uptake by sclera and choroid were measured to be 1.93±0.66 and 7.24±0.37 μg/g tissue, respectively, after two hours in pulsed operation mode (10s on/off cycles) at 23°C. During this period, a total amount of 192 ng DTX diffused into the exposed tissue. This MEMS device shows great potential for the treatment of ocular posterior segment diseases such as diabetic retinopathy by introducing a novel way of drug administration to the eye. © 2013 IEEE.
    Citation
    Pirmoradi FN, Ou K, Jackson JK, Letchford K, Cui J, et al. (2013) Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device. 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). Available: http://dx.doi.org/10.1109/MEMSYS.2013.6474161.
    Sponsors
    This work was funded in part by the CollaborativeHealth Research Projects, Natural Science andEngineering Research Council of Canada, the CanadianInstitutes of Health Research, and an AcademicExcellence Alliance grant awarded by the KAUST Officeof Competitive Research Funds. Mu Chiao is supportedby the Canada Research Chairs Program. Authors wouldlike to thank Mr. Tom Brubaker and Ms. Kye Lee,undergraduate students in the Lin lab, for their assistance.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS)
    DOI
    10.1109/MEMSYS.2013.6474161
    ae974a485f413a2113503eed53cd6c53
    10.1109/MEMSYS.2013.6474161
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.