• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Contaminant ingress into multizone buildings: An analytical state-space approach

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Parker, Simon
    Coffey, Chris
    Gravesen, Jens
    Kirkpatrick, James
    Ratcliffe, Keith
    Lingard, Bryan
    Nally, James
    KAUST Grant Number
    KUK-C1-013-04
    Date
    2013-08-13
    Online Publication Date
    2013-08-13
    Print Publication Date
    2014-02
    Permanent link to this record
    http://hdl.handle.net/10754/597844
    
    Metadata
    Show full item record
    Abstract
    The ingress of exterior contaminants into buildings is often assessed by treating the building interior as a single well-mixed space. Multizone modelling provides an alternative way of representing buildings that can estimate concentration time series in different internal locations. A state-space approach is adopted to represent the concentration dynamics within multizone buildings. Analysis based on this approach is used to demonstrate that the exposure in every interior location is limited to the exterior exposure in the absence of removal mechanisms. Estimates are also developed for the short term maximum concentration and exposure in a multizone building in response to a step-change in concentration. These have considerable potential for practical use. The analytical development is demonstrated using a simple two-zone building with an inner zone and a range of existing multizone models of residential buildings. Quantitative measures are provided of the standard deviation of concentration and exposure within a range of residential multizone buildings. Ratios of the maximum short term concentrations and exposures to single zone building estimates are also provided for the same buildings. © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.
    Citation
    Parker S, Coffey C, Gravesen J, Kirkpatrick J, Ratcliffe K, et al. (2013) Contaminant ingress into multizone buildings: An analytical state-space approach. Building Simulation 7: 57–71. Available: http://dx.doi.org/10.1007/s12273-013-0136-5.
    Sponsors
    This work was supported by the Dstl Research Scholarship scheme. We would like to thank the organisers of, and participants in, the European Study Group with Industry 80, Cardiff 2011 where the analytical state-space problem was presented and worked upon. Thanks are also expressed to David Allwright at the Smiths Institute, Oxford for discus-sions on the mathematical treatment, including suggestions for an alternative route to the solution of the exposure equation. James Kirkpatrick was a member of the Oxford Centre for Collaborative Applied Mathematics (OCCAM) where his work was supported by Award No. KUK-C1- 013-04, made by King Abdullah University of Science and Technology. This work was made possible by the availability of the database of residential multizone models provided by the National Institute of Standards and Technology. The authors are grateful for the constructive comments of the two anonymous reviewers which have greatly improved the manuscript.
    Publisher
    Springer Nature
    Journal
    Building Simulation
    DOI
    10.1007/s12273-013-0136-5
    ae974a485f413a2113503eed53cd6c53
    10.1007/s12273-013-0136-5
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.