• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Hanson, Ronald K.
    Pang, Genny A.
    Chakraborty, Sreyashi
    Ren, Wei
    Wang, Shengkai
    Davidson, David Frank
    Date
    2013-09
    Permanent link to this record
    http://hdl.handle.net/10754/597840
    
    Metadata
    Show full item record
    Abstract
    We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we demonstrate that this strategy eliminates the possibility of non-localized (remote) ignition in shock tubes. Furthermore, we show that this same strategy can also effectively eliminate or minimize pressure changes due to combustion heat release, thereby enabling quantitative modeling of the kinetics throughout the combustion event using a simple assumption of specified pressure and enthalpy. We measure temperature and OH radical time-histories during ethylene-oxygen combustion behind reflected shock waves in a constrained reaction volume and verify that the results can be accurately modeled using a detailed mechanism and a specified pressure and enthalpy constraint. © 2013 The Combustion Institute.
    Citation
    Hanson RK, Pang GA, Chakraborty S, Ren W, Wang S, et al. (2013) Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves. Combustion and Flame 160: 1550–1558. Available: http://dx.doi.org/10.1016/j.combustflame.2013.03.026.
    Sponsors
    The authors acknowledge Tamour Javed from KAUST for his assistance in the operation of the shock tube. This work was supported by the Army Research Office, with Dr. Ralph Anthenien as Contract Monitor.
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2013.03.026
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2013.03.026
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.