Comparative study on nanostructured MnO2/carbon composites synthesized by spontaneous reduction for supercapacitor application
dc.contributor.author | Lin, Yen-Po | |
dc.contributor.author | Tsai, Chung-Bo | |
dc.contributor.author | Ho, Wen-Hsien | |
dc.contributor.author | Wu, Nae-Lih | |
dc.date.accessioned | 2016-02-25T12:57:02Z | |
dc.date.available | 2016-02-25T12:57:02Z | |
dc.date.issued | 2011-10 | |
dc.identifier.citation | Lin Y-P, Tsai C-B, Ho W-H, Wu N-L (2011) Comparative study on nanostructured MnO2/carbon composites synthesized by spontaneous reduction for supercapacitor application. Materials Chemistry and Physics 130: 367–372. Available: http://dx.doi.org/10.1016/j.matchemphys.2011.06.050. | |
dc.identifier.issn | 0254-0584 | |
dc.identifier.doi | 10.1016/j.matchemphys.2011.06.050 | |
dc.identifier.uri | http://hdl.handle.net/10754/597806 | |
dc.description.abstract | MnO2 has been deposited onto two types of carbon (C) substrates, including a non-porous multi-wall carbon nano-tube (CNT) and a porous carbon black (CB) powder, by a solution reduction process where MnO4 - was reduced at 80 °C by the C substrate so as to give nano-crystalline MnO2 directly at the C surface. The nature of the C substrate has profound effects on polymorphicity, microstructure and electrochemical properties, in terms of supercapacitor application, of the resulting oxide. Deposition on CNT produces meso/macro-porous layer containing predominantly spinel MnO2 strongly bonded to the CNTs and having a larger surface area, while that on CB results in birnessite granules with a lower surface area. In addition to having a higher specific capacitance (309 F g-1), the MnO2/CNT electrode exhibits superior power performance (221 F g-1 at 500 mV s-1 or ca. 20 Wh kg -1at 88 kW kg-1) to MnO2/CB due to reduced electronic and ion-diffusion resistances. Furthermore, the MnO2/CNT electrode also exhibits slower self-discharging rate and greater cycling stability. The results indicate that the MnO2 spinel/CNT holds promise for supercapacitor applications. © 2011 Elsevier B.V. All rights reserved. | |
dc.description.sponsorship | This work is partially supported by Taiwan Textile Research Institute, by National Science Council, Taiwan, ROC (NSC 98-2221-E-002-084-MY3 and 98-3114-E-007-011), and by King Abdullah University of Science and Technology (KAUST) under the GRP Award (award no. KUK-C1-014-12). | |
dc.publisher | Elsevier BV | |
dc.subject | Chemical synthesis | |
dc.subject | Composite materials | |
dc.subject | Nanostructures | |
dc.subject | Supercapacitor | |
dc.title | Comparative study on nanostructured MnO2/carbon composites synthesized by spontaneous reduction for supercapacitor application | |
dc.type | Article | |
dc.identifier.journal | Materials Chemistry and Physics | |
dc.contributor.institution | National Taiwan University, Taipei, Taiwan | |
dc.contributor.institution | Taiwan Textile Research Institute, Taipei, Taiwan | |
kaust.grant.number | KUK-C1-014-12 |