Type
ArticleAuthors
Kramer, Illan J.
Sargent, Edward H.

KAUST Grant Number
KUS-11-009-21Date
2011-10-12Online Publication Date
2011-10-12Print Publication Date
2011-11-22Permanent link to this record
http://hdl.handle.net/10754/597796
Metadata
Show full item recordAbstract
Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun's broad spectrum. CQD materials' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. © 2011 American Chemical Society.Citation
Kramer IJ, Sargent EH (2011) Colloidal Quantum Dot Photovoltaics: A Path Forward. ACS Nano 5: 8506–8514. Available: http://dx.doi.org/10.1021/nn203438u.Sponsors
This publication is based on work in part supported by Award No. KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST). I.J.K. acknowledges the financial support through the Queen Elizabeth II/Ricoh Canada Graduate Scholarship in Science and Technology.Publisher
American Chemical Society (ACS)Journal
ACS NanoPubMed ID
21967723ae974a485f413a2113503eed53cd6c53
10.1021/nn203438u
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Depleted-heterojunction colloidal quantum dot solar cells.
- Authors: Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH
- Issue date: 2010 Jun 22
- Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics.
- Authors: Jeong KS, Tang J, Liu H, Kim J, Schaefer AW, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent EH, Asbury JB
- Issue date: 2012 Jan 24
- Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression.
- Authors: Ip AH, Kiani A, Kramer IJ, Voznyy O, Movahed HF, Levina L, Adachi MM, Hoogland S, Sargent EH
- Issue date: 2015 Sep 22
- Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress.
- Authors: Tang J, Sargent EH
- Issue date: 2011 Jan 4
- Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots.
- Authors: Koleilat GI, Levina L, Shukla H, Myrskog SH, Hinds S, Pattantyus-Abraham AG, Sargent EH
- Issue date: 2008 May