• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    CO2–CH4 permeation in high zeolite 4A loading mixed matrix membranes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Adams, Ryan T.
    Lee, Jong Suk
    Bae, Tae-Hyun
    Ward, Jason K.
    Johnson, J.R.
    Jones, Christopher W.
    Nair, Sankar
    Koros, William J.
    KAUST Grant Number
    KUS-I1-011-21
    Date
    2011-02
    Permanent link to this record
    http://hdl.handle.net/10754/597789
    
    Metadata
    Show full item record
    Abstract
    Mixed matrix membranes (MMMs) with low particle loadings have been shown to improve the properties of pure polymers for many gas separations. Comparatively few reports have been made for high particle loading (≥50vol.%) MMMs. In this work, CO2-CH4 feeds were used to study the potential of 50vol.% zeolite 4A-poly(vinyl acetate) (PVAc) MMMs for natural gas separations. A low CO2 partial pressure mixed feed probed MMM performance below the plasticization pressure of PVAc and a high CO2 partial pressure mixed feed probed MMM performance at industrially relevant conditions above the plasticization pressure.Under both mixed feed conditions at 35°C, substantial improvements in overall separation performance were observed. At low CO2 partial pressures, CO2 permeability roughly doubled with a nearly 50% increase in selectivity versus pure PVAc under the same conditions. For the high CO2 partial pressure feed, CO2 permeability remained effectively unchanged with a 63% increase in selectivity versus pure PVAc. Surprisingly, the performance of these PVAc based MMMs approached the properties of current " upper bound" polymers. Overall, this work shows that significantly improved performance MMMs can be made with traditional techniques from a low cost, low performance polymer without costly adhesion promoters. © 2010.
    Citation
    Adams RT, Lee JS, Bae T-H, Ward JK, Johnson JR, et al. (2011) CO2–CH4 permeation in high zeolite 4A loading mixed matrix membranes. Journal of Membrane Science 367: 197–203. Available: http://dx.doi.org/10.1016/j.memsci.2010.10.059.
    Sponsors
    NSF-STC (CERSP) under agreement CHE-9876674 and Award no. KUS-I1-011-21 made by the King Abdullah University of Science and Technology (KAUST) for this research.
    Publisher
    Elsevier BV
    Journal
    Journal of Membrane Science
    DOI
    10.1016/j.memsci.2010.10.059
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.memsci.2010.10.059
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.