• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Classification algorithms using adaptive partitioning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Binev, Peter
    Cohen, Albert
    Dahmen, Wolfgang
    DeVore, Ronald
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2014-12
    Permanent link to this record
    http://hdl.handle.net/10754/597780
    
    Metadata
    Show full item record
    Abstract
    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.
    Citation
    Binev P, Cohen A, Dahmen W, DeVore R (2014) Classification algorithms using adaptive partitioning. The Annals of Statistics 42: 2141–2163. Available: http://dx.doi.org/10.1214/14-AOS1234.
    Sponsors
    Supported by the Office of Naval Research Contracts ONR-N00014-08-1-1113, ONR-N0001409-1-0107; the AFOSR Contract FA95500910500; the ARO/DoD Contract W911NF-07-1-0185; the NSF Grants DMS-09-15231, DMS-12-22390 and DMS-09-15104; the Special Priority Program SPP 1324, funded by DFG; the French German PROCOPE contract 11418YB; the Agence Nationale de la Recherche (ANR) project ECHANGE (ANR-08-EMER-006); the excellence chair of the Foundation "Sciences Mathematiques de Paris" held by Ronald DeVore. This publication is based on work supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).
    Publisher
    Institute of Mathematical Statistics
    Journal
    The Annals of Statistics
    DOI
    10.1214/14-AOS1234
    ae974a485f413a2113503eed53cd6c53
    10.1214/14-AOS1234
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.