• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Chlorodiethylaluminum supported on silica: A dinuclear aluminum surface species with bridging μ2-Cl-ligand as a highly efficient co-catalyst for the Ni-catalyzed dimerization of ethene

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Kermagoret, Anthony
    Kerber, Rachel Nathaniel
    Conley, Matthew P.
    Callens, Emmanuel cc
    Florian, Pierre
    Massiot, Dominique
    Delbecq, Françoise
    Rozanska, Xavier
    Copéret, Christophe
    Sautet, Philippe
    KAUST Grant Number
    UK-00017
    Date
    2014-05
    Permanent link to this record
    http://hdl.handle.net/10754/597776
    
    Metadata
    Show full item record
    Abstract
    Silica-supported chloro alkyl aluminum co-catalysts (DEAC@support) were prepared via Surface Organometallic Chemistry by contacting diethylaluminum chloride (DEAC) and high specific surface silica materials, i.e. SBA-15, MCM-41, and Aerosil SiO2. Such systems efficiently activate NiCl 2(PBu3)2 for catalytic ethene dimerization, with turnover frequency (TOF) reaching up to 498,000 molC2H4/ (molNi h) for DEAC@MCM-41. A detailed analysis of the DEAC@SBA-15 co-catalyst structure by solid-state aluminum-27 NMR at high-field (17.6 T and 20.0 T) and ultrafast spinning rates allows to detect six sites, characterized by a distribution of quadrupolar interaction principal values CQ and isotropic chemical shifts δiso. Identification of the corresponding Al-grafted structures was possible by comparison of the experimental NMR signatures with these calculated by DFT on a wide range of models for the aluminum species (mono- versus di-nuclear, mono- versus bis-grafted with bridging Cl or ethyl). Most of the sites were identified as dinuclear species with retention of the structure of DEAC, namely with the presence of μ2-Cl-ligands between two aluminum, and this probably explains the high catalytic performance of this silica-supported co-catalysts. © 2014 Elsevier Inc. All rights reserved.
    Citation
    Kermagoret A, Kerber RN, Conley MP, Callens E, Florian P, et al. (2014) Chlorodiethylaluminum supported on silica: A dinuclear aluminum surface species with bridging μ2-Cl-ligand as a highly efficient co-catalyst for the Ni-catalyzed dimerization of ethene. Journal of Catalysis 313: 46–54. Available: http://dx.doi.org/10.1016/j.jcat.2014.02.006.
    Sponsors
    This publication is based on work supported by Award No.UK-00017, made by King Abdullah University of Science and Technology (KAUST), and by the TGE RMN THC Fr3050. The authors thank the PSMN at ENS of Lyon for the attribution of CPU time.
    Publisher
    Elsevier BV
    Journal
    Journal of Catalysis
    DOI
    10.1016/j.jcat.2014.02.006
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jcat.2014.02.006
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.